基于langchain-ChatGLM实现精准文档对话的技术方案
2025-05-04 17:51:07作者:蔡丛锟
在知识库问答系统中,如何实现针对特定文档的精准对话是一个常见的技术挑战。本文将以langchain-ChatGLM项目为例,探讨解决这一问题的技术方案。
问题背景分析
当知识库中包含多个主题相似的文档时,传统的向量检索方法可能会返回来自不同文档的文本块,导致回答准确性下降。这是因为:
- 向量检索仅基于语义相似度,不考虑文档来源
- 文档名称信息在切分过程中可能丢失
- 混合来源的文本块会导致回答内容混杂
技术解决方案
元数据增强策略
在文档预处理阶段,为每个文本块添加文档来源的元数据信息:
from langchain.text_splitter import CharacterTextSplitter
text_splitter = CharacterTextSplitter(
chunk_size=500,
chunk_overlap=50,
)
# 为每个chunk添加文档来源metadata
documents = text_splitter.create_documents([text], metadatas=[{"source": doc_name}])
两阶段检索机制
- 文档筛选阶段:根据用户指定的文档名进行初步筛选
# 先筛选出目标文档的chunks
filtered_chunks = [chunk for chunk in all_chunks if chunk.metadata.get("source") == target_doc]
- 语义检索阶段:在筛选后的chunks中进行向量相似度匹配
from langchain.embeddings import HuggingFaceEmbeddings
embedder = HuggingFaceEmbeddings()
query_embedding = embedder.embed_query(user_query)
# 只在筛选后的chunks中计算相似度
similarities = [cosine_similarity(query_embedding, chunk.embedding) for chunk in filtered_chunks]
系统优化效果
这种方案相比传统方法具有以下优势:
- 检索速度提升:缩小了向量检索的范围
- 回答准确性提高:确保所有上下文来自同一文档
- 资源消耗降低:避免了不必要的大规模向量计算
实现注意事项
- 文档命名规范化:建议建立统一的文档命名规则
- 元数据完整性检查:确保每个chunk都正确携带来源信息
- 混合检索策略:可保留当用户不指定文档时的全库检索能力
扩展思考
这种基于元数据过滤的思路可以进一步扩展:
- 支持多文档组合查询
- 实现基于文档类型的检索
- 开发文档关系图谱辅助检索
通过这种技术方案,langchain-ChatGLM项目可以更好地满足企业对特定文档精准问答的需求,提升知识库系统的实用性和准确性。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5