YOLOv5模型导出ONNX/TorchScript时体积倍增问题解析
2025-05-01 04:31:59作者:董斯意
在深度学习模型部署过程中,许多开发者发现YOLOv5模型在导出为ONNX或TorchScript格式时会出现体积倍增的现象。本文将从技术角度深入分析这一现象的原因,并提供相应的解决方案。
现象描述
YOLOv5原始PyTorch模型文件(.pt)通常体积较小,例如92MB的模型在导出为ONNX格式后可能膨胀至184MB。这种体积倍增现象在模型部署过程中会带来存储和传输方面的挑战。
原因分析
1. 序列化方式差异
PyTorch的.pt文件采用高效的序列化机制存储模型参数,而ONNX和TorchScript为了确保跨平台兼容性,采用了更为全面的序列化方案:
- 包含完整的计算图结构
- 存储额外的元数据信息
- 保留中间节点信息用于调试
2. 数据类型转换
PyTorch模型默认使用32位浮点数(FP32),在导出过程中:
- ONNX格式会保留完整的精度信息
- 某些情况下会添加类型转换节点
- 可能包含冗余的精度转换操作
3. 操作融合与优化
导出过程会进行图优化,可能导致:
- 重复的操作被保留以兼容不同后端
- 添加了额外的检查逻辑
- 包含不必要的前后处理节点
解决方案
1. 使用FP16精度导出
通过添加--half参数将模型转换为16位浮点数:
python export.py --weights yolov5s.pt --include onnx --half
这种方法通常可以减少约50%的模型体积。
2. 精简ONNX模型
使用ONNX运行时工具进行优化:
import onnx
from onnxruntime.transformers import optimizer
model = onnx.load("yolov5s.onnx")
optimized_model = optimizer.optimize_model(model)
optimized_model.save("yolov5s_optimized.onnx")
3. 自定义导出配置
在导出脚本中调整以下参数:
- 禁用不必要的节点输出
- 移除调试信息
- 优化计算图结构
最佳实践建议
- 评估实际部署场景对模型精度的需求,优先考虑FP16导出
- 在导出后使用ONNX优化工具进行二次处理
- 对于边缘设备部署,可考虑量化到INT8精度
- 定期检查YOLOv5更新,获取更好的导出优化
通过理解这些技术细节并应用相应的优化策略,开发者可以在保持模型性能的同时有效控制导出后的模型体积,为实际部署创造更好的条件。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
280
26