YOLOv5模型导出ONNX/TorchScript时体积倍增问题解析
2025-05-01 20:40:05作者:董斯意
在深度学习模型部署过程中,许多开发者发现YOLOv5模型在导出为ONNX或TorchScript格式时会出现体积倍增的现象。本文将从技术角度深入分析这一现象的原因,并提供相应的解决方案。
现象描述
YOLOv5原始PyTorch模型文件(.pt)通常体积较小,例如92MB的模型在导出为ONNX格式后可能膨胀至184MB。这种体积倍增现象在模型部署过程中会带来存储和传输方面的挑战。
原因分析
1. 序列化方式差异
PyTorch的.pt文件采用高效的序列化机制存储模型参数,而ONNX和TorchScript为了确保跨平台兼容性,采用了更为全面的序列化方案:
- 包含完整的计算图结构
- 存储额外的元数据信息
- 保留中间节点信息用于调试
2. 数据类型转换
PyTorch模型默认使用32位浮点数(FP32),在导出过程中:
- ONNX格式会保留完整的精度信息
- 某些情况下会添加类型转换节点
- 可能包含冗余的精度转换操作
3. 操作融合与优化
导出过程会进行图优化,可能导致:
- 重复的操作被保留以兼容不同后端
- 添加了额外的检查逻辑
- 包含不必要的前后处理节点
解决方案
1. 使用FP16精度导出
通过添加--half参数将模型转换为16位浮点数:
python export.py --weights yolov5s.pt --include onnx --half
这种方法通常可以减少约50%的模型体积。
2. 精简ONNX模型
使用ONNX运行时工具进行优化:
import onnx
from onnxruntime.transformers import optimizer
model = onnx.load("yolov5s.onnx")
optimized_model = optimizer.optimize_model(model)
optimized_model.save("yolov5s_optimized.onnx")
3. 自定义导出配置
在导出脚本中调整以下参数:
- 禁用不必要的节点输出
- 移除调试信息
- 优化计算图结构
最佳实践建议
- 评估实际部署场景对模型精度的需求,优先考虑FP16导出
- 在导出后使用ONNX优化工具进行二次处理
- 对于边缘设备部署,可考虑量化到INT8精度
- 定期检查YOLOv5更新,获取更好的导出优化
通过理解这些技术细节并应用相应的优化策略,开发者可以在保持模型性能的同时有效控制导出后的模型体积,为实际部署创造更好的条件。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
369
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
674
Ascend Extension for PyTorch
Python
242
279
React Native鸿蒙化仓库
JavaScript
270
328