Linkerd2 使用外部 Prometheus 监控数据持久化实践
2025-05-21 15:26:00作者:齐添朝
背景介绍
在 Kubernetes 服务网格 Linkerd2 的监控方案中,可视化组件 linkerd-viz 默认会部署一个内置的 Prometheus 实例。然而,这个内置实例存在数据无法持久化的问题,当 Pod 重启后历史监控数据就会丢失。本文将详细介绍如何配置 Linkerd2 使用外部 Prometheus 实现监控数据的持久化存储。
核心问题分析
Linkerd2 的 linkerd-viz 组件提供了服务网格的可观测性功能,包括路由指标、服务拓扑等。这些功能依赖于 Prometheus 采集和存储的指标数据。默认情况下,linkerd-viz 会部署一个非持久化的 Prometheus 实例,这会导致:
- 历史监控数据无法保留
- 无法进行长期趋势分析
- 重启后所有指标数据丢失
解决方案实施
1. 部署外部 Prometheus
使用 Helm 部署一个持久化的 Prometheus 实例到 linkerd-viz 命名空间:
server:
podAnnotations:
linkerd.io/inject: enabled
global:
scrape_interval: 10s
scrape_timeout: 10s
evaluation_interval: 10s
service:
servicePort: 9090
persistentVolume:
size: 20Gi
serverFiles:
prometheus.yml:
scrape_configs:
- job_name: 'linkerd-controller'
kubernetes_sd_configs:
- role: pod
namespaces:
names:
- 'linkerd'
- 'linkerd-viz'
relabel_configs:
- source_labels:
- __meta_kubernetes_pod_container_port_name
action: keep
regex: admin-http
- source_labels: [__meta_kubernetes_pod_container_name]
action: replace
target_label: component
- job_name: 'linkerd-service-mirror'
kubernetes_sd_configs:
- role: pod
relabel_configs:
- source_labels:
- __meta_kubernetes_pod_label_linkerd_io_control_plane_component
- __meta_kubernetes_pod_container_port_name
action: keep
regex: linkerd-service-mirror;admin-http$
- source_labels: [__meta_kubernetes_pod_container_name]
action: replace
target_label: component
- job_name: 'linkerd-proxy'
kubernetes_sd_configs:
- role: pod
relabel_configs:
- source_labels:
- __meta_kubernetes_pod_container_name
- __meta_kubernetes_pod_container_port_name
- __meta_kubernetes_pod_label_linkerd_io_control_plane_ns
action: keep
regex: ^linkerd-proxy;linkerd-admin;linkerd$
- source_labels: [__meta_kubernetes_namespace]
action: replace
target_label: namespace
- source_labels: [__meta_kubernetes_pod_name]
action: replace
target_label: pod
- source_labels: [__meta_kubernetes_pod_label_linkerd_io_proxy_job]
action: replace
target_label: k8s_job
- action: labeldrop
regex: __meta_kubernetes_pod_label_linkerd_io_proxy_job
- action: labelmap
regex: __meta_kubernetes_pod_label_linkerd_io_proxy_(.+)
- action: labeldrop
regex: __meta_kubernetes_pod_label_linkerd_io_proxy_(.+)
- action: labelmap
regex: __meta_kubernetes_pod_label_linkerd_io_(.+)
- action: labelmap
regex: __meta_kubernetes_pod_label_(.+)
replacement: __tmp_pod_label_$1
- action: labelmap
regex: __tmp_pod_label_linkerd_io_(.+)
replacement: __tmp_pod_label_$1
- action: labeldrop
regex: __tmp_pod_label_linkerd_io_(.+)
- action: labelmap
regex: __tmp_pod_label_(.+)
关键配置说明:
- 启用了持久化存储(20Gi)
- 配置了 Linkerd 特有的抓取规则
- 设置了合理的抓取间隔
- 确保服务端口与容器端口一致(9090)
2. 配置 Linkerd Viz 使用外部 Prometheus
修改 linkerd-viz 的 Helm 配置:
prometheus:
enabled: false
prometheusUrl: "http://prometheus-server.linkerd-viz.svc.cluster.local:9090"
3. 安全策略配置
为确保安全访问,需要配置适当的 Server 和 AuthorizationPolicy:
apiVersion: policy.linkerd.io/v1beta3
kind: Server
metadata:
name: prometheus-server-admin
namespace: linkerd-viz
spec:
accessPolicy: deny
podSelector:
matchLabels:
app.kubernetes.io/component: server
app.kubernetes.io/instance: prometheus
app.kubernetes.io/name: prometheus
port: 9090
proxyProtocol: HTTP/1
apiVersion: policy.linkerd.io/v1alpha1
kind: AuthorizationPolicy
metadata:
name: prometheus-server-admin
namespace: linkerd-viz
spec:
requiredAuthenticationRefs:
- kind: ServiceAccount
name: metrics-api
namespace: linkerd-viz
targetRef:
group: policy.linkerd.io
kind: Server
name: prometheus-server-admin
4. 扩展 MeshTLSAuthentication
更新 allow-viz 策略以包含 Prometheus 相关身份:
apiVersion: policy.linkerd.io/v1alpha1
kind: MeshTLSAuthentication
metadata:
name: linkerd-viz
namespace: linkerd-viz
spec:
identities:
- "tap.linkerd-viz.serviceaccount.identity.linkerd.cluster.local"
- "prometheus.linkerd-viz.serviceaccount.identity.linkerd.cluster.local"
- "prometheus-server.linkerd-viz.serviceaccount.identity.linkerd.cluster.local"
验证与调试
完成配置后,需要进行以下验证:
- 检查 Prometheus 目标状态是否健康
- 确认 linkerd viz dashboard 显示正常
- 测试 linkerd viz routes 命令功能
- 检查各组件日志是否有错误
常见问题排查点:
- Prometheus 配置必须放在 serverFiles 下而非 server
- 确保服务端口配置正确
- 检查网络策略是否允许必要通信
- 验证身份认证配置是否正确
最佳实践建议
- 根据集群规模调整 Prometheus 的存储大小
- 考虑设置适当的保留策略
- 定期备份 Prometheus 数据
- 监控 Prometheus 资源使用情况
- 考虑使用 Thanos 或 Cortex 实现长期存储
通过以上配置,Linkerd2 的监控数据将持久化存储在外部 Prometheus 中,既保留了 Linkerd 提供的丰富监控功能,又解决了数据持久化问题,为服务网格的长期运行监控提供了可靠保障。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134