Factory框架中ParameterFactory的参数感知作用域解析
参数工厂的作用域限制
在Factory依赖注入框架中,ParameterFactory是一个强大的功能,它允许我们基于输入参数动态创建服务实例。然而,在2.5.0版本之前,ParameterFactory与作用域(scope)结合使用时存在一个明显的限制:当使用.shared等作用域时,系统会忽略后续传入的不同参数值,始终返回基于第一次调用参数创建的实例。
这种设计在某些场景下会带来不便,特别是当我们需要根据不同的参数值缓存不同的服务实例时。例如,一个用户服务可能需要根据用户ID缓存不同的用户实例,而原始实现无法满足这种需求。
解决方案:scopeOnParameters修饰符
在Factory 2.5.0版本中,引入了.scopeOnParameters修饰符来解决这一问题。这个新特性使得ParameterFactory能够感知参数变化,并为不同的参数值维护独立的缓存实例。
实现原理
要使用这一功能,参数类型必须遵循Hashable协议。框架内部会利用参数的哈希值来区分不同的实例缓存。当启用.scopeOnParameters后,系统会为每个唯一的参数值创建并缓存独立的服务实例。
使用示例
// 定义支持参数感知缓存的ParameterFactory
var parameterService: ParameterFactory<Int, ParameterService> {
self { ParameterService(value: $0) }.scopeOnParameters.cached
}
在这个例子中,每次使用不同的整数值请求parameterService时,系统都会检查是否已有对应参数值的缓存实例。如果没有,则创建新实例并缓存;如果已有,则返回缓存的实例。
技术背景与考量
设计决策
最初的设计选择忽略参数差异主要是出于简化实现的考虑。引入参数感知缓存需要:
- 确保参数类型可哈希
- 维护更复杂的缓存数据结构
- 处理潜在的哈希冲突
性能影响
参数感知缓存会带来一定的内存开销,因为需要为每个不同的参数值维护独立的实例。开发者需要权衡内存使用和性能需求,特别是在参数空间较大的情况下。
最佳实践建议
- 合理选择参数类型:作为缓存键的参数应该具有良好定义的哈希实现,避免哈希冲突
- 注意内存管理:对于可能产生大量不同参数值的场景,考虑使用弱引用或其他缓存策略
- 明确业务需求:只有在确实需要基于参数缓存时才使用.scopeOnParameters,避免不必要的开销
总结
Factory 2.5.0引入的.scopeOnParameters修饰符显著增强了ParameterFactory的灵活性,使其能够更好地处理依赖参数变化的服务实例缓存需求。这一改进展示了框架对实际开发场景的深入理解和对开发者需求的积极响应。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00