优雅使用SciPy进行分位数归一化:基因表达数据分析实战
2025-06-02 12:35:39作者:仰钰奇
引言
在基因表达数据分析中,数据标准化是一个至关重要的预处理步骤。本文将介绍如何使用NumPy和SciPy实现分位数归一化(Quantile Normalization),这是一种强大的标准化技术,能够确保不同样本的测量值具有相同的统计分布。
分位数归一化原理
分位数归一化是一种使不同样本具有相同分布的技术,主要包含三个步骤:
- 对每列数据进行排序
- 计算排序后每行的平均值
- 用平均列的对应分位数替换每列的分位数
这种方法的优势在于:
- 消除技术变异带来的分布差异
- 保留样本间的相对排序关系
- 适用于各种高通量数据,如微阵列和RNA-seq
实现分位数归一化
下面是用NumPy和SciPy实现分位数归一化的完整代码:
import numpy as np
from scipy import stats
def quantile_norm(X):
"""将X的每列归一化为相同分布
参数:
X : 2D数组, 形状(M, N)
输入数据,M行(基因/特征)和N列(样本)
返回:
Xn : 2D数组, 形状(M, N)
归一化后的数据
"""
# 计算分位数
quantiles = np.mean(np.sort(X, axis=0), axis=1)
# 计算每列的秩
ranks = np.apply_along_axis(stats.rankdata, 0, X)
# 将秩转换为0到M-1的整数索引
rank_indices = ranks.astype(int) - 1
# 使用秩矩阵索引每个秩的分位数
Xn = quantiles[rank_indices]
return Xn
def quantile_norm_log(X):
"""对数转换后的分位数归一化"""
logX = np.log(X + 1) # 加1避免log(0)
logXn = quantile_norm(logX)
return logXn
关键技术点解析
这段代码展示了NumPy的多个强大特性:
- 多维数组操作:处理2D矩阵形式的数据
- 向量化运算:使用单行代码完成整个数组的对数变换
- 轴操作:通过指定axis参数沿特定维度排序和计算均值
- 科学计算生态整合:直接使用SciPy的统计函数
- 沿轴应用函数:使用apply_along_axis函数
- 高级索引:使用整数数组索引(花式索引)
实际应用:TCGA皮肤癌数据分析
我们使用癌症基因组图谱(TCGA)的皮肤癌RNA-seq数据来演示分位数归一化的效果。
数据加载与预处理
import bz2
import pandas as pd
# 读取压缩的计数数据
with bz2.open('data/counts.txt.bz2', mode='rt') as f:
data_table = pd.read_csv(f, index_col=0)
# 转换为NumPy数组
counts = data_table.to_numpy()
归一化前后分布对比
我们定义一个函数来绘制每列的密度分布:
from scipy import stats
import matplotlib.pyplot as plt
def plot_col_density(data):
"""绘制每列的密度曲线"""
density_per_col = [stats.gaussian_kde(col) for col in data.T]
x = np.linspace(np.min(data), np.max(data), 100)
fig, ax = plt.subplots()
for density in density_per_col:
ax.plot(x, density(x))
ax.set_xlabel('数据值(每列)')
ax.set_ylabel('密度')
归一化前分布
log_counts = np.log(counts + 1)
plot_col_density(log_counts)
归一化前,不同样本的基因表达分布差异明显,峰值位置可能相差一个数量级。
归一化后分布
log_counts_normalized = quantile_norm_log(counts)
plot_col_density(log_counts_normalized)
归一化后,所有样本的分布几乎完全相同,消除了技术变异带来的系统性差异。
双聚类分析
完成归一化后,我们可以对基因和样本进行双聚类分析:
- 基因聚类:发现共表达的基因模块
- 样本聚类:识别具有相似表达谱的样本群体
为提高效率,我们首先选择变异最大的1500个基因:
def most_variable_rows(data, *, n=1500):
"""选择变异最大的n行"""
rowvar = np.var(data, axis=1)
sort_indices = np.argsort(rowvar)[-n:]
return data[sort_indices, :]
结语
分位数归一化是基因表达数据分析中不可或缺的步骤。通过本文的实现,我们不仅标准化了数据,还展示了如何高效使用NumPy和SciPy进行科学计算。这种归一化方法为后续的差异表达分析、聚类分析等提供了可靠的数据基础。
实际应用中,分位数归一化后的数据可以用于:
- 样本分类和预后预测
- 基因共表达网络构建
- 生物标志物发现
- 多种组学数据的整合分析
理解并掌握这一技术将大大提升您在生物信息学数据分析中的能力。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
407
3.14 K
Ascend Extension for PyTorch
Python
226
252
暂无简介
Dart
673
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
658
React Native鸿蒙化仓库
JavaScript
262
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868