Azure CLI机器学习扩展在WSL环境下性能问题的分析与解决
2025-06-15 07:01:15作者:邵娇湘
问题背景
在使用Azure CLI的机器学习扩展(ml)时,许多用户报告了严重的性能下降问题。特别是在WSL(Windows Subsystem for Linux)环境中,安装和使用该扩展会导致整个Azure CLI变得异常缓慢,即使执行简单的命令也需要等待很长时间。
问题现象
当用户在WSL环境中安装Azure CLI的机器学习扩展后,会出现以下典型症状:
- 扩展安装过程耗时极长,大约需要20分钟才能完成
- 安装完成后,任何
az命令(包括非机器学习相关命令)执行速度都显著下降 - 从调试日志可见,仅加载ml扩展就需要159秒
根本原因分析
经过深入调查,发现该问题的根源在于Docker Desktop与WSL2的交互方式。具体表现为:
- Docker Desktop在WSL环境中创建了一个从
~/.azure目录到Windows文件系统的符号链接 - Azure CLI默认会将扩展安装到
~/.azure/cliextensions目录下 - 由于符号链接指向Windows文件系统,而Windows和WSL之间的文件系统交互存在性能瓶颈
- 机器学习扩展包含大量文件,频繁的文件访问操作放大了跨系统文件操作的性能问题
解决方案
针对这一问题,推荐以下解决方案:
方法一:移除符号链接
-
在WSL终端中,首先备份现有的
.azure目录:mv ~/.azure ~/.azure_backup -
创建一个新的本地
.azure目录:mkdir ~/.azure -
重新安装机器学习扩展:
az extension add --name ml
方法二:更改扩展安装位置
-
修改Azure CLI配置,指定扩展安装到WSL本地目录:
az config set extension.use_dynamic_install=yes_prompt az config set extension.install_dir=/path/to/local/directory -
然后重新安装扩展
预防措施
为避免类似问题再次发生,建议:
- 定期检查WSL环境中的符号链接情况
- 对于频繁访问的配置文件,尽量保持在WSL本地文件系统中
- 考虑使用WSL1而非WSL2,如果不需要WSL2的特定功能
总结
Azure CLI机器学习扩展在WSL环境下的性能问题主要源于跨系统文件访问的开销。通过将配置文件保留在WSL本地文件系统中,可以显著提升命令执行速度。这一解决方案不仅适用于机器学习扩展,对于其他需要频繁访问配置文件的CLI工具也有参考价值。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
177
195
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
264
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
270
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
378
3.34 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1