首页
/ 开源项目 `analytics-componentized-patterns` 使用指南

开源项目 `analytics-componentized-patterns` 使用指南

2024-09-25 18:09:35作者:廉皓灿Ida

1. 项目介绍

analytics-componentized-patterns 是由 Google Cloud Platform 提供的一个开源项目,旨在帮助用户充分利用 BigQuery ML 和其他 Google Cloud 产品,实现生产环境中的数据分析和机器学习任务。该项目提供了多种组件化的模式,涵盖了从数据集准备到模型部署的整个流程,适用于零售、游戏和金融等多个行业。

2. 项目快速启动

2.1 克隆项目

首先,克隆 analytics-componentized-patterns 项目到本地:

git clone https://github.com/GoogleCloudPlatform/analytics-componentized-patterns.git
cd analytics-componentized-patterns

2.2 设置环境

确保你已经安装了 Python 和 Jupyter Notebook。如果没有安装,可以使用以下命令进行安装:

pip install jupyter

2.3 运行示例 Notebook

进入 gaming/propensity-model/bqml 目录,运行 bqml_ga4_gaming_propensity_to_churn.ipynb 示例 Notebook:

cd gaming/propensity-model/bqml
jupyter notebook bqml_ga4_gaming_propensity_to_churn.ipynb

2.4 配置 BigQuery ML

在 Notebook 中,按照提示配置 BigQuery ML,创建和训练模型。以下是一个简单的示例代码:

CREATE OR REPLACE MODEL `your_project.your_dataset.propensity_model`
OPTIONS(model_type='logistic_reg') AS
SELECT
  user_id,
  churn_label,
  feature1,
  feature2
FROM
  `your_project.your_dataset.user_data`

3. 应用案例和最佳实践

3.1 零售行业

  • 推荐系统:使用 BigQuery ML 构建端到端的推荐系统,适用于酒店和电子商务数据。
  • 购买倾向模型:通过 BigQuery ML 和 Kubeflow Pipelines 构建购买倾向模型。

3.2 游戏行业

  • 用户流失预测:使用 Google Analytics 4 (GA4) 和 BigQuery ML 预测游戏用户的流失情况。

3.3 金融行业

  • 欺诈检测:构建实时信用卡欺诈检测解决方案。

4. 典型生态项目

  • BigQuery ML:用于在 BigQuery 中创建和执行机器学习模型。
  • Kubeflow Pipelines:用于构建、部署和管理机器学习工作流的工具。
  • Google Analytics 4:新一代的 Google Analytics,提供更强大的数据分析功能。

通过这些组件化的模式和工具,用户可以快速构建和部署复杂的机器学习解决方案,满足不同行业的需求。

热门项目推荐
相关项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
267
55
国产编程语言蓝皮书国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区
65
17
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
196
45
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
53
44
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
268
69
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
333
27
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
896
0
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
419
108
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
144
24
HarmonyOS-Cangjie-CasesHarmonyOS-Cangjie-Cases
参考 HarmonyOS-Cases/Cases,提供仓颉开发鸿蒙 NEXT 应用的案例集
Cangjie
58
4