Google Cloud Go AI Platform v1.89.0版本发布:增强RAG与索引管理能力
Google Cloud Go SDK的AI Platform组件发布了v1.89.0版本,这个版本主要围绕检索增强生成(RAG)功能和索引管理进行了重要增强。作为Google Cloud提供的机器学习平台服务,AI Platform为开发者提供了构建、部署和管理机器学习模型的完整工具链。
RAG功能增强
本次更新在RAG(检索增强生成)功能方面做了显著改进:
-
新增include_thoughts字段:在Part消息中新增了include_thoughts字段,这个字段允许开发者在模型响应中包含中间推理过程,为调试和理解模型行为提供了更好的透明度。
-
RAG作为上下文存储:现在可以将RAG作为Gemini Live API的上下文/记忆存储使用,这意味着开发者可以构建更复杂的对话系统,使模型能够记住和检索之前的交互信息,显著提升了长对话场景下的连贯性。
-
文档解析配置更新:对RagFileParsingConfig消息的文档注释进行了更新,为开发者提供了更清晰的指导,帮助他们更好地配置RAG文件的解析过程。
索引管理功能
在索引服务方面,v1.89.0版本引入了重要的新功能:
-
ImportIndex功能:IndexService现在支持ImportIndex操作,这使得开发者能够将外部索引数据导入到AI Platform中,极大地简化了索引迁移和共享的流程。
-
性能指标注释更新:对global_max_embedding_requests_per_min字段的注释进行了更新,为开发者提供了更准确的性能指标说明,帮助他们更好地规划和管理嵌入请求的配额。
技术影响与最佳实践
这些更新对构建基于大语言模型的应用有着重要意义:
-
调试能力提升:include_thoughts字段的引入让开发者能够洞察模型的推理过程,这在调试复杂提示或解决模型输出不符合预期时特别有用。
-
对话系统增强:将RAG作为Gemini Live API的记忆存储,使得构建具有长期记忆能力的对话助手成为可能,适用于客服、教育等需要上下文保持的场景。
-
索引管理简化:ImportIndex功能的加入减少了数据迁移的复杂性,特别是在多环境部署或团队协作时,可以更高效地共享和重用索引数据。
建议开发者在升级到v1.89.0版本后,充分利用这些新特性来优化他们的AI应用,特别是在需要复杂对话管理和高效索引操作的场景下。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0136
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00