Beanie ODM 中 Decimal 类型序列化问题解析
在使用 Beanie ODM 进行 MongoDB 文档操作时,处理高精度数值类型 Decimal 是一个常见的需求。本文将通过一个典型问题案例,深入分析 Decimal 类型在序列化过程中遇到的异常及其解决方案。
问题现象
开发者在尝试创建包含 Decimal 字段的文档时,遇到了 decimal.Inexact 异常。具体表现为当使用 Decimal(8204491.822422388) 这样的浮点数构造 Decimal 对象时,在 BSON 序列化阶段抛出错误。
原因分析
这个问题的根本原因在于 Decimal 的构造方式。当使用浮点数直接构造 Decimal 对象时,Python 会先将浮点数转换为二进制表示,这可能导致精度损失。而 MongoDB 的 Decimal128 类型对精度有严格要求,无法容忍这种不精确的转换。
解决方案
正确的做法是使用字符串形式构造 Decimal 对象:
value = Decimal("8204491.822422388")
这种构造方式能够保持数值的精确性,因为字符串直接表示了十进制数字,避免了二进制浮点数的精度问题。
最佳实践
-
始终使用字符串构造 Decimal:这是保证数值精确性的最可靠方法。
-
使用 Beanie 的 DecimalAnnotation:Beanie 提供了专门的 DecimalAnnotation 类型来处理 Decimal 字段,这比直接使用 decimal.Decimal 更符合文档模型的规范。
-
注意数值边界:MongoDB 的 Decimal128 类型有其数值范围限制,确保你的数值在有效范围内。
-
统一处理精度:可以在应用层面设置统一的 Decimal 上下文,控制精度和舍入方式。
技术背景
Decimal 类型的设计初衷是为了解决浮点数运算中的精度问题。与二进制浮点数不同,Decimal 使用十进制表示法,特别适合财务计算等需要精确十进制表示的场景。
MongoDB 的 Decimal128 类型提供了 34 位十进制数字的精度,能够精确表示大多数业务场景中的数值。Beanie 通过 DecimalAnnotation 提供了与 MongoDB Decimal128 的无缝集成。
总结
处理高精度数值时,开发者需要注意数值的构造方式。通过使用字符串构造 Decimal 对象并配合 Beanie 的 DecimalAnnotation,可以确保数值在应用层和数据库层都能保持精确表示。这种实践不仅解决了序列化问题,也为后续的数值计算提供了可靠的基础。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00