Onigmo 技术文档
1. 安装指南
Onigmo 是一个正则表达式库,支持多种平台。以下是不同平台的安装步骤:
Unix 和 Cygwin 平台
- 执行
./autogen.sh(如果configure文件不存在)。 - 执行
./configure。 - 执行
make。 - 执行
make install。
- 进行测试:执行
make test。 - 卸载:执行
make uninstall。 - 配置检查:执行
onigmo-config --cflags、onigmo-config --libs、onigmo-config --prefix和onigmo-config --exec-prefix。
Windows 64/32位平台(Visual C++)
执行 build_nmake.cmd。build_x64 或 build_x86 将用作工作/输出目录。
-
onigmo_s.lib:静态链接库。 -
onigmo.lib:动态链接库的导入库。 -
onigmo.dll:动态链接库。 -
测试(ASCII/Shift_JIS/EUC-JP/Unicode):执行
build_nmake.cmd test。需要与 Onigmo 同位数的 Python 来运行测试。
Windows 64/32位平台(MinGW)
执行 mingw32-make -f win32/Makefile.mingw。build_x86-64、build_i686 等将用作工作/输出目录。
-
libonigmo.a:静态链接库。 -
libonigmo.dll.a:动态链接库的导入库。 -
onigmo.dll:动态链接库。 -
测试(ASCII/Shift_JIS/EUC-JP/Unicode):执行
mingw32-make -f win32/Makefile.mingw test。需要与 Onigmo 同位数的 Python 来运行测试。 -
如果在 MSYS2 上使用 MinGW,也可以像 Unix 一样使用
./configure和make。在这种情况下,DLL 名称将包含 API 版本号。例如:libonigmo-6.dll。
2. 项目使用说明
要使用 Onigmo,需要在程序中包含 onigmo.h 头文件。有关 Onigmo API 的详细信息,请参阅 doc/API。
如果希望在 onigmo.h 中禁用 UChar 类型的定义(等于 unsigned char),请定义 ONIG_ESCAPE_UCHAR_COLLISION,然后包含 onigmo.h。
如果希望在 onigmo.h 中禁用 regex_t 类型的定义,请定义 ONIG_ESCAPE_REGEX_T_COLLISION,然后包含 onigmo.h。
在 Unix 或 Cygwin 中的编译/链接命令行示例(假设前缀为 /usr/local):
cc sample.c -L/usr/local/lib -lonigmo
如果希望在 Win32 上使用静态链接库(onigmo_s.lib),请在 C 编译器中添加 -DONIG_EXTERN=extern 选项。
3. 项目 API 使用文档
Onigmo 的 API 文档位于 doc/API 目录中。有关如何使用这些 API 的详细信息,请参考该文档。
4. 项目安装方式
Onigmo 的安装方式已在“安装指南”部分详细介绍,根据不同的操作系统平台,安装方式略有不同。请参照相应的步骤进行安装。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00