Open-LLM-VTuber 中 Vtuber 动作控制的技术实现
动作控制的基本原理
在 Open-LLM-VTuber 项目中,Vtuber 的动作控制主要通过 motion3.json 文件来实现。这种文件格式是 VTube Studio 等虚拟主播软件常用的动作数据格式,包含了角色模型各个部位的动画关键帧信息。
动作制作的完整流程
1. 准备工作
首先需要确保已经安装 VTube Studio 软件,并且已经导入或创建了 Vtuber 角色模型。VTube Studio 提供了直观的界面来录制和编辑角色动作。
2. 动作录制
在 VTube Studio 中,可以通过以下方式创建动作:
- 手动调整模型各部分参数并记录关键帧
- 使用动作捕捉设备实时录制
- 导入预设的动作模板进行修改
3. 动作导出
完成动作编辑后,可以将动作序列导出为 motion3.json 格式。这个文件包含了所有动作的关键帧数据、时间轴信息以及各部位的运动参数。
在 Open-LLM-VTuber 中使用动作文件
文件放置位置
将导出的 motion3.json 文件放置在项目指定的动作资源目录中,通常是在 resources/motions 文件夹下。
动作调用方式
在代码中可以通过指定动作文件名来调用特定动作。项目提供了 API 接口来触发这些动作,开发者可以根据需要将动作与特定的对话内容或用户交互关联起来。
高级动作控制技巧
动作混合
可以通过编程方式将多个基础动作混合,创造出更复杂的动作表现。例如将挥手动作与行走动作结合,实现边走边挥手的自然效果。
参数化动作控制
某些动作可以通过参数动态调整,比如挥手的速度、幅度等。这需要在 motion3.json 中设置可调节参数,并在代码中实现参数传递机制。
常见问题解决方案
动作不自然
可能是关键帧设置不够平滑,可以尝试在 VTube Studio 中调整关键帧的插值方式,使用贝塞尔曲线等方法来优化动作过渡。
动作不同步
检查 motion3.json 文件中的时间轴设置,确保各个部位的动作时间协调一致。也可以考虑使用动作同步标记来确保多部位动作的协调性。
通过以上方法,开发者可以在 Open-LLM-VTuber 项目中实现丰富多样的 Vtuber 动作表现,提升虚拟主播的互动性和表现力。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00