深入解析strangetom/ingredient-parser的后处理机制
本文将深入探讨strangetom/ingredient-parser项目中后处理模块的工作原理,该模块负责将模型输出的原始标签和分数转换为更有结构化的数据格式。
后处理概述
当模型处理完一个食材描述句子后,会输出每个token对应的标签和置信度分数。后处理模块的任务是将这些原始数据转换为易于使用的结构化数据,主要通过ParsedIngredient
类来实现。
ParsedIngredient
类定义了最终返回的数据结构,包含以下关键字段:
- 名称(name)
- 规格(size)
- 数量(amount)
- 准备方式(preparation)
- 用途(purpose)
- 备注(comment)
- 原始句子(sentence)
各类别数据的处理方式
规格、准备方式、用途和备注的处理
对于SIZE、PREP、PURPOSE和COMMENT这些标签,后处理过程遵循以下步骤:
- 识别对应标签及标点符号的位置
- 将连续的索引分组
- 将每组token用空格连接成字符串
- 可选地丢弃仅包含停用词的组
- 计算每组token的平均置信度
- 移除孤立的或无效的标点符号
- 用逗号连接所有组并修正标点
- 计算所有组的平均置信度
最终生成IngredientText
对象,包含文本内容、置信度和在原始句子中的起始位置。
食材名称的特殊处理
名称处理相对复杂,因为涉及多种标签类型:
- B_NAME_TOK/I_NAME_TOK:基本名称标签
- NAME_VAR:名称变体
- NAME_MOD:名称修饰词
- NAME_SEP:名称分隔符
处理流程包括:
- 识别所有名称相关标签
- 按标签类型分组,B_NAME_TOK开始新组
- 反向遍历处理组间关系
- 应用与前述类似的文本合并和清理步骤
最终输出一个或多个IngredientText
对象,取决于是否启用separate_names
参数。
数量信息的精细处理
数量信息由QTY和UNIT标签组合而成,生成IngredientAmount
对象,包含:
- 数量值(quantity)
- 最大数量(quantity_max,用于范围)
- 单位(unit)
- 文本表示(text)
- 置信度(confidence)
- 多种标志位
数量值的特殊处理
数量值以fractions.Fraction
对象形式存储,保持精确计算能力。文本形式的数字(如"one")会被转换为数值形式,通过预定义的STRING_NUMBERS
字典和预编译的正则表达式实现高效转换。
单位的标准化处理
使用Pint库进行单位标准化,例如:
- "g"、"gram"、"grams" →
<Unit('gram')>
- 支持美制和英制单位切换(通过
imperial_units
参数)
特殊数量标志
IngredientAmount
包含多个标志位提供额外信息:
- APPROXIMATE:近似数量(如"about 2 cups")
- SINGULAR:单数指示(如"each")
- RANGE:数值范围(如"1-2 cups")
- MULTIPLIER:倍数表示(如"2x")
- PREPARED_INGREDIENT:处理后测量标志
复杂情况的特殊处理
嵌套数量处理
对于类似"2 14 ounce cans"的结构,系统能识别出:
- 外层数量:"2 cans"
- 内层数量:"14 ounce"(标记为SINGULAR)
复合数量处理
对于组合单位(如"1lb 2oz"),生成CompositeIngredientAmount
对象,包含多个IngredientAmount
实例及其组合关系。
技术实现要点
- 分数处理:使用Python的fractions模块保持精度
- 性能优化:预编译正则表达式加速文本转换
- 单位系统:基于Pint库实现灵活的单位转换能力
- 上下文感知:通过标志位捕获丰富的语义信息
通过这套后处理机制,strangetom/ingredient-parser能够将简单的文本输入转换为富含语义信息的结构化数据,为食谱分析、营养计算等应用提供了坚实的基础。
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
- QQwen3-Coder-480B-A35B-InstructQwen3-Coder-480B-A35B-Instruct是当前最强大的开源代码模型之一,专为智能编程与工具调用设计。它拥有4800亿参数,支持256K长上下文,并可扩展至1M,特别擅长处理复杂代码库任务。模型在智能编码、浏览器操作等任务上表现卓越,性能媲美Claude Sonnet。支持多种平台工具调用,内置优化的函数调用格式,能高效完成代码生成与逻辑推理。推荐搭配温度0.7、top_p 0.8等参数使用,单次输出最高支持65536个token。无论是快速排序算法实现,还是数学工具链集成,都能流畅执行,为开发者提供接近人类水平的编程辅助体验。【此简介由AI生成】Python00
- KKimi-K2-InstructKimi-K2-Instruct是月之暗面推出的尖端混合专家语言模型,拥有1万亿总参数和320亿激活参数,专为智能代理任务优化。基于创新的MuonClip优化器训练,模型在知识推理、代码生成和工具调用场景表现卓越,支持128K长上下文处理。作为即用型指令模型,它提供开箱即用的对话能力与自动化工具调用功能,无需复杂配置即可集成到现有系统。模型采用MLA注意力机制和SwiGLU激活函数,在vLLM等主流推理引擎上高效运行,特别适合需要快速响应的智能助手应用。开发者可通过兼容OpenAI/Anthropic的API轻松调用,或基于开源权重进行深度定制。【此简介由AI生成】Python00
FlutterUnit
全平台 Flutter 学习体验应用Dart01GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。05- WWan2.2-TI2V-5BWan2.2-TI2V-5B是一款开源的先进视频生成模型,基于创新的混合专家架构(MoE)设计,显著提升了视频生成的质量与效率。该模型支持文本生成视频和图像生成视频两种模00
热门内容推荐
最新内容推荐
项目优选









