深入解析strangetom/ingredient-parser的后处理机制
本文将深入探讨strangetom/ingredient-parser项目中后处理模块的工作原理,该模块负责将模型输出的原始标签和分数转换为更有结构化的数据格式。
后处理概述
当模型处理完一个食材描述句子后,会输出每个token对应的标签和置信度分数。后处理模块的任务是将这些原始数据转换为易于使用的结构化数据,主要通过ParsedIngredient
类来实现。
ParsedIngredient
类定义了最终返回的数据结构,包含以下关键字段:
- 名称(name)
- 规格(size)
- 数量(amount)
- 准备方式(preparation)
- 用途(purpose)
- 备注(comment)
- 原始句子(sentence)
各类别数据的处理方式
规格、准备方式、用途和备注的处理
对于SIZE、PREP、PURPOSE和COMMENT这些标签,后处理过程遵循以下步骤:
- 识别对应标签及标点符号的位置
- 将连续的索引分组
- 将每组token用空格连接成字符串
- 可选地丢弃仅包含停用词的组
- 计算每组token的平均置信度
- 移除孤立的或无效的标点符号
- 用逗号连接所有组并修正标点
- 计算所有组的平均置信度
最终生成IngredientText
对象,包含文本内容、置信度和在原始句子中的起始位置。
食材名称的特殊处理
名称处理相对复杂,因为涉及多种标签类型:
- B_NAME_TOK/I_NAME_TOK:基本名称标签
- NAME_VAR:名称变体
- NAME_MOD:名称修饰词
- NAME_SEP:名称分隔符
处理流程包括:
- 识别所有名称相关标签
- 按标签类型分组,B_NAME_TOK开始新组
- 反向遍历处理组间关系
- 应用与前述类似的文本合并和清理步骤
最终输出一个或多个IngredientText
对象,取决于是否启用separate_names
参数。
数量信息的精细处理
数量信息由QTY和UNIT标签组合而成,生成IngredientAmount
对象,包含:
- 数量值(quantity)
- 最大数量(quantity_max,用于范围)
- 单位(unit)
- 文本表示(text)
- 置信度(confidence)
- 多种标志位
数量值的特殊处理
数量值以fractions.Fraction
对象形式存储,保持精确计算能力。文本形式的数字(如"one")会被转换为数值形式,通过预定义的STRING_NUMBERS
字典和预编译的正则表达式实现高效转换。
单位的标准化处理
使用Pint库进行单位标准化,例如:
- "g"、"gram"、"grams" →
<Unit('gram')>
- 支持美制和英制单位切换(通过
imperial_units
参数)
特殊数量标志
IngredientAmount
包含多个标志位提供额外信息:
- APPROXIMATE:近似数量(如"about 2 cups")
- SINGULAR:单数指示(如"each")
- RANGE:数值范围(如"1-2 cups")
- MULTIPLIER:倍数表示(如"2x")
- PREPARED_INGREDIENT:处理后测量标志
复杂情况的特殊处理
嵌套数量处理
对于类似"2 14 ounce cans"的结构,系统能识别出:
- 外层数量:"2 cans"
- 内层数量:"14 ounce"(标记为SINGULAR)
复合数量处理
对于组合单位(如"1lb 2oz"),生成CompositeIngredientAmount
对象,包含多个IngredientAmount
实例及其组合关系。
技术实现要点
- 分数处理:使用Python的fractions模块保持精度
- 性能优化:预编译正则表达式加速文本转换
- 单位系统:基于Pint库实现灵活的单位转换能力
- 上下文感知:通过标志位捕获丰富的语义信息
通过这套后处理机制,strangetom/ingredient-parser能够将简单的文本输入转换为富含语义信息的结构化数据,为食谱分析、营养计算等应用提供了坚实的基础。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~058CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0382- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









