家庭自动化助手:Home Generative Agent 开源项目教程
2025-05-19 23:33:32作者:丁柯新Fawn
1. 项目介绍
Home Generative Agent(HGA)是一个基于Home Assistant的开源项目,它使用LangChain和LangGraph技术构建了一个生成式AI助手。该助手能够理解和学习用户的家庭环境,自动执行任务,并与用户进行交互。HGA支持复杂的自动化任务、图像场景分析、家庭状态分析等功能,能够为智能家居环境提供更加智能化的用户体验。
2. 项目快速启动
在开始之前,请确保您的系统中已经安装了Home Assistant。
安装步骤
-
克隆项目到本地:
git clone https://github.com/goruck/home-generative-agent.git -
进入项目目录:
cd home-generative-agent -
安装项目依赖:
pip install -r requirements.txt -
将项目的
custom_components目录下的home_generative_agent文件夹复制到Home Assistant的custom_components目录中。 -
在Home Assistant的配置文件中添加HGA组件的配置信息。
-
重启Home Assistant。
配置示例
在Home Assistant的配置文件中添加以下内容:
home_generative_agent:
# 你的配置项
3. 应用案例和最佳实践
创建自动化
以下是一个创建自动化任务的YAML配置示例:
alias: Check Litter Box Waste Drawer
triggers:
- minutes: /30
trigger: time_pattern
conditions:
- condition: numeric_state
entity_id: sensor.litter_robot_4_waste_drawer
above: 90
actions:
- data:
message: The Litter Box waste drawer is more than 90% full!
action: notify.notify
家庭状态总结
创建一个定期运行的自动化任务来总结家庭状态:
alias: Prepare Home for Arrival
description: Turn on front porch light and unlock garage door lock at 7:30 PM
mode: single
triggers:
- at: "19:30:00"
trigger: time
actions:
- target:
entity_id: light.front_porch_light
action: light.turn_on
- target:
entity_id: lock.garage_door_lock
action: lock.unlock
图像场景分析
HGA可以分析摄像头图像并识别场景,例如检测包裹:
# 在配置中启用图像场景分析功能
hga_scene_analysis:
# 相关配置
4. 典型生态项目
Home Generative Agent作为Home Assistant的一个组件,可以与以下生态项目配合使用,以提供更完整的智能家居解决方案:
- Home Assistant: 核心的智能家居自动化平台。
- Node-RED: 可视化编程工具,用于创建复杂的自动化流程。
- ESPHome: 用于将微控制器(如ESP8266/ESP32)集成到Home Assistant中的项目。
通过集成这些项目,用户可以构建一个更加智能和个性化的智能家居系统。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
433
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
352
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
690
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
143
881
React Native鸿蒙化仓库
JavaScript
266
327
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
211
115
仓颉编译器源码及 cjdb 调试工具。
C++
138
869