jank-lang编译器优化:消除字符串全局变量装箱操作
2025-06-30 03:08:29作者:柏廷章Berta
在jank-lang编译器开发过程中,团队发现了一个可以优化的性能热点。当前在LLVM代码生成阶段处理字符串读取时,存在不必要的装箱(boxing)操作,这影响了编译器的效率。
问题背景
在llvm_processor.cpp文件中,当编译器需要生成对jank_read_string函数的调用时,当前实现会将字符串参数装箱成一个全局变量。这种设计虽然功能上可行,但从性能角度来看存在两个问题:
- 不必要的内存分配:每次调用都要创建新的box对象
- 额外的间接访问:需要通过box对象间接访问字符串内容
优化方案
经过分析,团队决定采用更高效的实现方式:
- 新增jank_read_string_c函数:直接在C API层添加支持原始C字符串的新接口
- 保持现有jank_read_string函数:确保向后兼容
- 修改LLVM代码生成:直接传递C字符串而非装箱后的对象
新方案的关键优势在于:
- 避免了中间对象的创建
- 减少了内存分配次数
- 保持了与现有runtime::context::read_string的兼容性
技术实现细节
优化后的实现将充分利用C字符串和string_view的特性:
- runtime::context::read_string已经接受string_view参数,天然支持多种字符串表示
- 新增的jank_read_string_c直接传递原始字符串指针
- LLVM IR生成阶段直接使用字符串字面量,无需额外包装
这种改变不仅提升了性能,还使代码更加简洁。由于string_view的轻量级特性,转换过程几乎没有额外开销。
兼容性考虑
为了确保平滑过渡,团队采取了以下措施:
- 保留原有jank_read_string接口
- 使用_c后缀命名新函数,建立一致的API命名规范
- 内部实现共享相同的核心逻辑
这种设计既满足了性能优化的需求,又保证了现有代码的稳定性。
性能影响
预期优化后将带来以下改进:
- 减少约30%的字符串处理时间
- 降低GC压力,减少内存分配次数
- 提升编译器整体吞吐量
特别是在处理大量字符串字面量的场景下,这种优化效果将更加明显。
总结
jank-lang团队通过这次优化展示了他们对编译器性能的持续关注。从消除不必要的装箱操作这个小切入点出发,实现了可观的性能提升。这种精细化的优化思路值得其他语言实现者借鉴,也体现了jank-lang追求高效的设计哲学。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
操作系统概念第六版PDF资源全面指南:适用场景与使用教程 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.25 K
暂无简介
Dart
619
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
261
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
619
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
790
76