探索无注意力的翻译模型:You May Not Need Attention
2024-05-22 18:46:52作者:鲍丁臣Ursa
在深度学习的翻译领域,注意力机制常被视为提高性能的关键元素。然而,来自Ofir Press和Noah A. Smith的研究——《You May Not Need Attention》提出了一种名为“Eager Translation Model”的新方法,它摒弃了传统的注意力机制,却能实现与之相媲美的性能。这一开源项目正提供了该模型的实现代码。
项目介绍
这个开源项目是基于PyTorch构建的,旨在演示如何通过Eager Translation Model进行无注意力的神经机器翻译。项目包括数据预处理、模型训练以及翻译生成等步骤。它依赖于fast_align计算对齐,使用sacreBLEU评估BLEU分数,并需要Python 3.6+环境支持。
项目技术分析
Eager Translation Model的核心思想是直接将源语言序列转换为目标语言序列,而无需中间的注意力权重分布。这种方法简化了模型结构,降低了计算复杂度,使得模型能够更高效地运行。项目提供的add_epsilons.py脚本用于处理数据,使其适合Eager Translation Model的要求,而main.py则负责模型的训练,generate.py用于翻译任务。
应用场景
该项目适用于任何需要神经机器翻译的场景,特别是那些对实时性和效率要求较高的应用。比如,在多语种信息检索、跨语言文档自动化翻译或者在线语言服务中,Eager Translation Model都能提供有力的支持。
项目特点
- 高效性:去除了注意力机制,提高了模型的运行速度。
- 简单性:模型结构相对简洁,易于理解和实现。
- 可扩展性:尽管例子中使用的数据集是WMT 2014 EN→DE,但模型可以轻松适应其他语言对。
- 易用性:清晰的预处理和训练流程,配合详细的README文件,使得上手非常容易。
如果你对探索新的翻译模型或优化现有系统的效率感兴趣,那么这个项目绝对值得你尝试。让我们一起见证无注意力机制也能产出高质量翻译结果的魅力吧!
引用该项目,请参考以下论文:
@article{press2018you,
title={You May Not Need Attention},
author={Press, Ofir and Smith, Noah A},
journal={arXiv preprint arXiv:1810.13409},
year={2018}
}
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
477
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.21 K
Ascend Extension for PyTorch
Python
169
190
暂无简介
Dart
615
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
仓颉编译器源码及 cjdb 调试工具。
C++
126
855
仓颉编程语言测试用例。
Cangjie
36
852
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258