NgRx SignalStore 响应式层增强方案解析
2025-05-28 14:02:13作者:韦蓉瑛
背景与目标
NgRx SignalStore 作为基于 Angular Signals 的可复用状态容器,近期社区提出了为其增加响应式层的建议。该建议旨在为 SignalStore 引入事件驱动架构,使其具备更强大的状态管理能力,同时保持现有 API 的简洁性。
核心设计理念
建议基于几个关键原则构建:
- 信号(Signals):用于状态及其变化的通信
- 副作用(Side Effects):处理异步操作如 HTTP 请求等
- 状态变更:由事件触发
- 事件来源:用户交互或框架自身
这种架构与传统的状态管理模式类似,但更轻量且专注于组件级别的状态管理。
建议主要内容
事件定义与处理
开发者可以通过 withEvents 定义 store 可能发出的事件:
withEvents({
canvasReady: (canvas: HTMLCanvasElement) => canvas,
canvasLeftClick: (point: Point) => point
})
在方法中通过 emit 触发事件:
withMethods((store) => ({
init(canvas: HTMLCanvasElement) {
store.emit('canvasReady', canvas);
}
}))
外部可通过 on 方法监听事件:
store.on('canvasLeftClick').subscribe(event => {...});
响应式状态变更
新增 withReducer 功能,允许开发者定义事件驱动的状态变更:
withReducer((state, event) => {
switch(event.type) {
case 'canvasLeftClick':
return {...state, circles: [...state.circles, newCircle]};
default:
return state;
}
})
副作用处理
通过 withEffects 处理异步操作:
withEffects((store) => ({
handleLeftClick$: store.on('canvasReady').pipe(
switchMap((event) => fromEvent(event.payload, 'click')),
tap((event) => store.emit('canvasLeftClick', point))
)
}))
设计考量
- RxJS 集成:虽然 SignalStore 基于 Signals,但事件处理仍采用 RxJS,因为 Signals 不适合事件流场景
- 渐进式采用:这些 API 完全可选,类似于 React 的 useState 和 useReducer 关系
- 开发体验:事件定义与 reducer 同处一个 store 定义中,减少传统状态管理的间接性
- 未来扩展:为开发者工具集成等高级功能奠定基础
社区反馈与讨论
建议引发了热烈讨论,主要观点包括:
- 支持方认为事件驱动模式解决了复杂场景下的状态管理问题,特别是跨 store 通信
- 反对方担忧这会增加复杂度,违背 SignalStore 简洁的初衷
- 改进建议包括:
- 保持与现有 API 的一致性
- 考虑全局事件分发机制
- 避免字符串类型的事件名
实施路径
核心团队明确了几个关键点:
- 这不是状态管理替代方案,而是本地事件系统
- 不会移除现有 API(withState/withMethods 等)
- 将作为可选功能集成,不影响基础使用
- 未来可能考虑插件化架构分离核心与高级功能
技术价值
这一增强使 SignalStore 能够:
- 处理更复杂的业务场景
- 实现撤销/重做等高级功能
- 保持轻量级的同时获得事件溯源能力
- 为开发者提供从简单到复杂的平滑升级路径
该建议展现了 NgRx 团队在 Angular 信号时代的状态管理思考,平衡了简单性与扩展性,为开发者提供了更多架构选择。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
669
155
Ascend Extension for PyTorch
Python
219
236
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.82 K
React Native鸿蒙化仓库
JavaScript
259
322
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
仓颉编程语言运行时与标准库。
Cangjie
141
879