MicroPython中共享SPI总线的SD卡与显示屏冲突问题解析
2025-05-10 13:05:44作者:卓炯娓
问题背景
在使用MicroPython开发嵌入式项目时,经常会遇到多个外设共享同一组SPI总线的情况。本文以ESP32-S3平台为例,分析当SD卡模块和ST7789显示屏共用SPI总线时出现的异常行为,并提供解决方案。
现象描述
在Lilygo TDeck和M5Stack Cardputer等开发板上,当SD卡和显示屏共用SPI总线时,开发者会遇到以下典型问题:
- 初始化顺序敏感:SD卡能否成功挂载取决于是否先初始化显示屏
- 数据损坏:在显示屏操作后,SD卡读取会出现UnicodeError或乱码
- 功能失效:如果不重新初始化SPI总线,显示屏可能无法更新
- 系统不稳定:某些情况下会导致REPL连接断开
技术分析
SPI总线共享机制
在ESP32架构中,SPI主机控制器分为两种:
- 专用SD/MMC控制器(Host0-1)
- 通用SPI控制器(Host2-3)
当多个设备共享同一组SPI引脚时,需要特别注意:
- 片选信号管理:必须确保任何时候只有一个设备的CS引脚为低电平
- 总线速率兼容性:不同设备可能支持不同的最大SPI时钟频率
- 初始化状态:每次切换设备时可能需要重新初始化SPI参数
MicroPython实现特点
MicroPython的底层设计采用了"最小化代码,最大化性能"的原则。与CircuitPython不同,它没有内置复杂的SPI总线共享管理机制,而是将这部分职责交给应用层处理。
解决方案
方法一:使用第三方SD卡驱动
- 采用micropython-lib中的sdcard.py驱动
- 在每次SPI操作前显式重新初始化总线
- 确保操作完成后拉高所有片选信号
示例代码改进:
# 在每次SPI操作前
self.spi.init(baudrate=self.baudrate)
# 操作完成后
display_cs.high()
sdcard_cs.high()
方法二:优化SPI参数配置
- 降低SPI时钟频率(如从80MHz降至40MHz)
- 确保所有共享设备支持设定的频率
- 在设备切换时添加适当延时
方法三:设备操作封装
为每个SPI设备创建独立的操作封装函数,确保:
- 初始化SPI总线
- 激活目标设备(拉低对应CS)
- 执行操作
- 释放总线(拉高所有CS)
最佳实践建议
- 初始化顺序:先初始化SD卡并挂载文件系统,再初始化其他设备
- 错误处理:添加重试机制应对偶尔的初始化失败
- 电源管理:确保共享设备的上电顺序和电源稳定性
- 调试技巧:使用逻辑分析仪监控SPI总线活动
总结
在MicroPython中共享SPI总线需要开发者自行管理总线冲突问题。通过合理选择驱动、优化初始化流程和严格管理片选信号,可以稳定地实现SD卡和显示屏等设备的协同工作。理解SPI总线的工作原理和MicroPython的设计哲学,有助于开发出更可靠的嵌入式应用。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
196
218
暂无简介
Dart
635
144
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
652
276
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
245
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
627
仓颉编译器源码及 cjdb 调试工具。
C++
128
858
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
73
98
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
385
3.72 K