Cassandra分布式测试(DTests)技术文档
1. 安装指南
环境依赖
在开始运行DTests之前,需要安装一些必要的依赖项。以下是所需的依赖项:
- Python 3
- PIP for Python 3
- libev
- git
- JDK 8 (Java)
Linux 系统
在Linux系统上,可以通过以下命令安装所需的依赖项:
apt-get install git-core python3 python3-pip python3-dev libev4 libev-dev
可选步骤(解决警告:“jemalloc共享库无法预加载以加速内存分配”):
apt-get install -y --no-install-recommends libjemalloc1
Mac 系统
在Mac系统上,推荐安装最新的Xcode和命令行工具,并使用Homebrew来安装依赖项:
brew install python3 libev
Python 依赖
DTests还需要一些外部的Python依赖项。这些依赖项的列表保存在cassandra-dtest仓库根目录下的requirements.txt文件中。
推荐使用pip和virtualenv来安装这些依赖项。虽然virtualenv不是严格必需的,但它可以提供一个通用的基础环境,避免不同配置之间的冲突。
-
安装
virtualenv:pip install virtualenv -
创建一个新的
virtualenv:virtualenv --python=python3 --no-site-packages ~/dtest -
激活新的
virtualenv:source ~/dtest/bin/activate -
安装DTest的Python依赖项:
pip install -r /path/to/cassandra-dtest/requirements.txt
2. 项目使用说明
测试执行
DTests使用pytest框架来执行测试。pytest框架提供了一个非常有用的使用和调用文档,可以帮助你了解基本的调用选项。
在执行测试时,框架需要知道Cassandra源代码的位置。有两种方式可以指定Cassandra源代码的位置:
-
使用现有的源代码:
pytest --cassandra-dir=~/path/to/cassandra -
使用
ccm能力从archives.apache.org下载/编译发布的源代码:pytest --cassandra-version=1.0.0
运行特定测试
你可以通过传递测试文件、类或单个测试的路径来运行特定的测试:
pytest --cassandra-dir=~/path/to/cassandra pending_range_test.py
pytest --cassandra-dir=~/path/to/cassandra pending_range_test.py::TestPendingRangeMovements
pytest --cassandra-dir=~/path/to/cassandra pending_range_test.py::TestPendingRangeMovements::test_pending_range
重复运行测试
在添加新测试或修改现有测试时,建议多次运行以确保其稳定性。可以使用--count选项来重复运行测试。例如,运行一个测试类10次:
pytest --count=10 --cassandra-dir=~/path/to/cassandra pending_range_test.py
测试日志
每个测试都会启动一个新的集群,并在测试结束后将其关闭。如果测试失败,节点的日志将保存在logs/<timestamp>目录中,以便分析。
3. 项目API使用文档
测试编写
如果你需要编写新的测试或修改现有测试,建议参考现有的测试代码。每个测试都会启动一个新的集群,并在测试结束后将其关闭。
调试测试
在调试DTests时,可以使用以下方法:
使用pytest.set_trace()
如果某个断言值不符合预期,可以在断言前添加pytest.set_trace(),以便在执行到该行代码时进入交互式Python调试器(pdb),从而检查测试变量的状态。
处理挂起的测试
调试挂起的测试可能会比较困难,但通过Python 3的改进,现在可以轻松获取pytest进程中所有线程的Python线程转储。可以在代码中添加以下内容:
import faulthandler
faulthandler.enable()
这将安装一个信号处理程序,当进程接收到SIGABRT信号时,Python将转储所有运行线程的线程转储。
4. 项目安装方式
安装步骤
通过以上步骤,你可以成功安装并运行Cassandra分布式测试(DTests)。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00