SeerAttention 开源项目最佳实践教程
2025-05-21 08:05:04作者:盛欣凯Ernestine
1. 项目介绍
SeerAttention 是由微软开源的一个新颖的可训练稀疏注意力机制。它通过在模型训练后的自蒸馏阶段直接从大型语言模型(LLMs)学习内禀稀疏模式。SeerAttention 实现了更快的推理速度,同时保持长文本上下文填充的准确性。
主要特点包括:
- 可训练的稀疏注意力,超越静态/预定义的注意力稀疏性。
- 块级稀疏,硬件效率高。
- 自蒸馏,轻量级训练注意力门控(原始权重冻结)。
- 高效的内核,实现块级稀疏的FlashAttention。
- 易于集成,与现有变压器架构兼容。
2. 项目快速启动
环境准备
首先,创建一个新的虚拟环境并安装所需的依赖:
conda create -yn seer python=3.11
conda activate seer
pip install torch==2.4.0
pip install -r requirements.txt
pip install -e .
推理使用 AttnGate 适配器
在推理阶段,我们会自动将原始的基础模型与蒸馏后的 AttnGates 组合起来。SeerAttention 支持两种稀疏方法(阈值/TopK)将软门控得分转换为硬二进制注意力掩码。目前,我们仅使用单个稀疏配置适用于所有注意力头。建议探索其他配置以平衡速度提升和质量。
from transformers import AutoTokenizer, AutoConfig
from seer_attn import SeerAttnLlamaForCausalLM
model_name = "SeerAttention/SeerAttention-Llama-3.1-8B-AttnGates"
config = AutoConfig.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(config.base_model, padding_side="left")
# 使用阈值基础的稀疏方法
model = SeerAttnLlamaForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
seerattn_sparsity_method='threshold',
seerattn_threshold=5e-4, # 较高 = 更稀疏,典型范围 5e-4 ~ 5e-3
)
# 或者使用 TopK 基础的稀疏方法
model = SeerAttnLlamaForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
seerattn_sparsity_method='nz_ratio',
seerattn_nz_ratio=0.5, # 较低 = 更稀疏,典型范围 0.1 ~ 0.9
)
model = model.cuda()
# 现在可以进行推理
3. 应用案例和最佳实践
(此部分将介绍如何在实际应用中使用 SeerAttention,包括但不限于模型训练、推理优化和集成策略。具体内容将根据实际开源项目的使用场景和社区反馈进行编写。)
4. 典型生态项目
(此部分将列举一些基于 SeerAttention 开发的典型生态项目,展示如何在不同场景下利用 SeerAttention 进行创新。项目列表将根据实际的开源生态和社区贡献进行更新。)
注意:以上快速启动代码及教程内容仅为示例,具体细节可能需要根据实际项目文档和代码库的最新状态进行调整。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C045
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0122
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
698
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
369
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
674
Ascend Extension for PyTorch
Python
242
280
React Native鸿蒙化仓库
JavaScript
270
328