WONNX项目在Rust中集成时遇到的线程安全问题分析
2025-07-09 13:30:16作者:曹令琨Iris
wonnx
A WebGPU-accelerated ONNX inference run-time written 100% in Rust, ready for native and the web
背景介绍
WONNX是一个基于WebGPU的ONNX推理运行时,它允许开发者在各种平台上运行ONNX模型。最近有开发者在尝试将WONNX集成到他们的Rust项目中时,遇到了一系列与线程安全相关的编译错误。这些错误主要出现在使用WONNX的master分支时,特别是在WebAssembly(WASM)环境下。
问题现象
开发者报告的主要错误集中在WONNX的优化器模块(optimizer.rs)中,具体表现为:
- 异步递归函数无法安全地在线程间发送
dyn wgpu::WindowHandle类型无法安全地在线程间共享- 各种WGPU相关类型不满足
Send或Synctrait要求
这些错误在构建WASM目标时出现,而在构建原生macOS目标时则不会出现。
技术分析
根本原因
问题的根源在于WONNX的优化器模块使用了async_recursion宏,而其中涉及的WGPU类型在WASM环境下不满足线程安全要求。具体来说:
- WGPU的上下文类型
(dyn wgpu::context::DynContext + 'static)没有实现Synctrait - WGPU的窗口句柄类型
dyn wgpu::WindowHandle也没有实现Synctrait - 这些类型在异步递归函数中被使用,而Rust要求跨await点的变量必须实现
Sendtrait
WASM环境的特殊性
在WASM环境中,WGPU的实现与原生环境有所不同。WASM通常运行在单线程环境中,因此某些类型可能没有实现多线程相关的trait。这与原生环境下的行为不同,导致了构建错误的环境依赖性。
解决方案
经过分析,解决方案相对直接:对于WASM目标,可以禁用优化器中的常量折叠功能。这是因为:
- 常量折叠不是WASM环境下的核心需求
- 这样可以避免使用那些不满足线程安全要求的WGPU类型
- 在WASM环境下,性能通常不是首要考虑因素
技术实现细节
在WONNX项目中,优化器模块负责对ONNX模型进行各种优化,包括常量折叠。常量折叠需要访问GPU设备(GpuModel),这就引入了WGPU类型的使用。在WASM环境下,这些WGPU类型的线程安全特性与Rust的异步编程模型产生了冲突。
总结
这个问题展示了在不同目标平台(特别是WASM与原生平台)下,Rust类型系统行为的差异。它也提醒我们在编写跨平台代码时,需要特别注意线程安全和异步编程的相关约束。对于WONNX项目来说,通过条件编译禁用WASM环境下的特定功能是一个合理的解决方案。
这个案例也体现了Rust强大的类型系统如何帮助开发者发现潜在的线程安全问题,即使这些问题可能只在特定环境下显现。
wonnx
A WebGPU-accelerated ONNX inference run-time written 100% in Rust, ready for native and the web
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178