WONNX项目在Rust中集成时遇到的线程安全问题分析
2025-07-09 13:30:16作者:曹令琨Iris
wonnx
A WebGPU-accelerated ONNX inference run-time written 100% in Rust, ready for native and the web
背景介绍
WONNX是一个基于WebGPU的ONNX推理运行时,它允许开发者在各种平台上运行ONNX模型。最近有开发者在尝试将WONNX集成到他们的Rust项目中时,遇到了一系列与线程安全相关的编译错误。这些错误主要出现在使用WONNX的master分支时,特别是在WebAssembly(WASM)环境下。
问题现象
开发者报告的主要错误集中在WONNX的优化器模块(optimizer.rs)中,具体表现为:
- 异步递归函数无法安全地在线程间发送
dyn wgpu::WindowHandle类型无法安全地在线程间共享- 各种WGPU相关类型不满足
Send或Synctrait要求
这些错误在构建WASM目标时出现,而在构建原生macOS目标时则不会出现。
技术分析
根本原因
问题的根源在于WONNX的优化器模块使用了async_recursion宏,而其中涉及的WGPU类型在WASM环境下不满足线程安全要求。具体来说:
- WGPU的上下文类型
(dyn wgpu::context::DynContext + 'static)没有实现Synctrait - WGPU的窗口句柄类型
dyn wgpu::WindowHandle也没有实现Synctrait - 这些类型在异步递归函数中被使用,而Rust要求跨await点的变量必须实现
Sendtrait
WASM环境的特殊性
在WASM环境中,WGPU的实现与原生环境有所不同。WASM通常运行在单线程环境中,因此某些类型可能没有实现多线程相关的trait。这与原生环境下的行为不同,导致了构建错误的环境依赖性。
解决方案
经过分析,解决方案相对直接:对于WASM目标,可以禁用优化器中的常量折叠功能。这是因为:
- 常量折叠不是WASM环境下的核心需求
- 这样可以避免使用那些不满足线程安全要求的WGPU类型
- 在WASM环境下,性能通常不是首要考虑因素
技术实现细节
在WONNX项目中,优化器模块负责对ONNX模型进行各种优化,包括常量折叠。常量折叠需要访问GPU设备(GpuModel),这就引入了WGPU类型的使用。在WASM环境下,这些WGPU类型的线程安全特性与Rust的异步编程模型产生了冲突。
总结
这个问题展示了在不同目标平台(特别是WASM与原生平台)下,Rust类型系统行为的差异。它也提醒我们在编写跨平台代码时,需要特别注意线程安全和异步编程的相关约束。对于WONNX项目来说,通过条件编译禁用WASM环境下的特定功能是一个合理的解决方案。
这个案例也体现了Rust强大的类型系统如何帮助开发者发现潜在的线程安全问题,即使这些问题可能只在特定环境下显现。
wonnx
A WebGPU-accelerated ONNX inference run-time written 100% in Rust, ready for native and the web
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248