Julia Gaussian Processes: KernelFunctions.jl 深度探索指南
2024-09-12 12:07:33作者:廉皓灿Ida
项目介绍
KernelFunctions.jl 是一个面向广义目的的内核函数包,提供了灵活的框架来创建和操纵内核函数。它不仅拥有丰富的内核函数库,还支持自定义实现,使得在朱利亚(Julia)编程语言中构建高斯过程模型变得高效且直观。该项目设计兼容Julia生态系统中的其他重要工具如AbstractGPs、GPLikelihoods、ApproximateGPs以及Turing.jl等,旨在简化从基础的内核计算到复杂的概率建模流程。
项目快速启动
安装KernelFunctions.jl
首先,确保你的计算机上已经安装了Julia。接下来,在Julia的REPL环境中执行以下命令以添加此库:
using Pkg
Pkg.add("KernelFunctions")
基础使用示例
内核函数的快速使用包括选择或创建一个内核对象,并进行基本操作。例如,创建一个带长度尺度的平方指数内核并计算两点之间的内核值:
using KernelFunctions, Random
Random.seed!(123) # 确定随机种子以复现结果
# 创建带有特定长度尺度的平方指数内核
k = with_lengthscale(KernelFunctions.SqExponentialKernel(), 0.5)
# 随机生成输入点
x1 = rand(3)
x2 = rand(3)
# 计算这两个点之间的内核值
println(k(x1, x2))
应用案例和最佳实践
高斯过程先验样本
利用KernelFunctions.jl,可以轻松地生成高斯过程的先验样本,这对于理解和视觉化高斯过程非常有用。下面是如何结合平方指数内核创建一个高斯过程样例的场景:
using Distributions, Plots
# 设置内核和超参数
length_scale = 1.0
variance = 2.0
k = variance * with_lengthscale(KernelFunctions.SqExponentialKernel(), length_scale)
# 生成时间序列数据点
x = collect.linspace(-5, 5, 50)
# 计算协方差矩阵并生成样本
K = kernelmatrix(k, x)
y = rand(MvNormal(K))
plot(x, y', label="Sample GP", linewidth=2)
xlabel!("Time")
ylabel!("Value")
title!("Gaussian Process Sample with Squared Exponential Kernel")
典型生态项目集成
KernelFunctions.jl在朱利亚的概率编程和机器学习生态中扮演核心角色,常见于与其他库的集成中。例如,整合到Turing.jl进行贝叶斯推断时,可以这样构建具有复杂内核的模型:
using Turing, KernelFunctions
@model function gpr_model(X, y, σ_n²=0.1)
# 假设长度尺度和方差作为未知参数
ℓ ~ InverseGamma(2, 3)
η ~ LogNormal()
σ_n ~ truncated(Normal(0, 2), 0, Inf)
k = η * SqExponentialKernel(; σℓ=exp(ℓ))
μ = zeros(size(X)[1])
y ~ MvNormal(mean(k(X,X)), σ_n^2 .* I)
end
# 假设有一些训练数据
X_train, y_train = ... # 实际数据替换这里
# 进行采样
chain = sample(gpr_model(X_train, y_train), HMC(0.05, 6))
通过这样的集成,KernelFunctions.jl使得复杂模型的建立和调参成为可能,同时也推动了朱利亚社区在统计学习领域的发展。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
670
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
Ascend Extension for PyTorch
Python
219
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.82 K
React Native鸿蒙化仓库
JavaScript
259
322