Anoma项目中的事件结构体与过滤器自动化实践
2025-05-06 03:01:59作者:羿妍玫Ivan
在区块链节点开发过程中,事件处理是一个常见且重要的模式。Anoma项目作为一个隐私保护的分布式账本平台,其节点实现中也需要处理各种类型的事件。本文将深入探讨如何通过宏来简化事件结构体定义及其过滤器的创建过程。
事件处理的基本模式
在Elixir实现的Anoma节点中,事件通常采用嵌套结构体来表示。一个典型的事件处理流程包含三个层级:
- 最外层是EventBroker.Event,作为事件总线的基础结构
- 中间层是Node.Event,表示节点级别的事件
- 最内层是具体的事件体,如Mempool.TxEvent等
这种分层设计使得事件系统具有良好的扩展性和组织性,但也带来了重复代码的问题。每次定义新的事件类型时,开发者都需要手动编写相应的过滤器代码。
传统实现方式的问题
以交易事件为例,传统实现需要分别定义结构体和过滤器:
typedstruct module: TxEvent do
field(:id, binary())
field(:tx, Mempool.Tx.t())
end
deffilter TxFilter do
%EventBroker.Event{body: %Node.Event{body: %Mempool.TxEvent{}}} ->
true
_ ->
false
end
这种实现方式存在几个明显问题:
- 重复劳动:每次新增事件类型都需要编写几乎相同的过滤器代码
- 维护困难:当事件层级或命名发生变化时,需要手动更新所有相关过滤器
- 容易出错:手写模式匹配容易遗漏某些情况或写错结构路径
宏解决方案的设计
为了解决上述问题,我们可以设计一个名为eventstruct
的宏,它能够同时生成事件结构体和对应的过滤器。这个宏应该:
- 继承
typedstruct
的所有功能,保持类型定义的能力 - 自动生成基于事件路径的过滤器
- 支持自定义过滤器逻辑的扩展
- 保持生成的代码可读性和可调试性
实现细节
eventstruct
宏的实现需要考虑几个关键点:
- 模块路径解析:需要正确处理嵌套模块名,如将
Mempool.TxEvent
转换为Mempool.TxFilter
- 事件路径构建:自动生成从EventBroker到具体事件的完整路径匹配模式
- 类型系统集成:保持与Elixir类型系统的兼容性
- 宏卫生性:避免宏展开时的命名冲突问题
一个可能的实现方案如下:
defmacro eventstruct(do: block) do
quote do
typedstruct unquote(block)
Module.concat(__MODULE__, "Filter")
|> Module.create(
quote do
use EventBroker.Filter
def match(%EventBroker.Event{
body: %Node.Event{
body: %unquote(__MODULE__){}
}
}), do: true
def match(_), do: false
end,
Macro.Env.location(__ENV__)
)
end
end
使用示例
使用新的eventstruct
宏后,代码可以简化为:
eventstruct module: TxEvent do
field(:id, binary())
field(:tx, Mempool.Tx.t())
end
这相当于同时定义了TxEvent
结构体和TxEvent.Filter
模块,大大减少了样板代码。
进阶用法
对于需要自定义过滤逻辑的场景,可以扩展宏以支持选项:
eventstruct module: CustomEvent do
field(:data, term())
filter do
%CustomEvent{data: data} when is_binary(data) -> true
_ -> false
end
end
这种设计既保持了简洁性,又提供了足够的灵活性。
性能考量
虽然宏会增加编译时间,但在运行时性能上:
- 生成的过滤器代码与手写代码完全相同
- 模式匹配是Elixir的核心特性,非常高效
- 结构体访问在BEAM虚拟机中经过优化
因此,这种方案不会引入额外的运行时开销。
总结
通过eventstruct
宏,Anoma项目可以:
- 减少事件系统相关的样板代码
- 提高代码一致性和可维护性
- 降低新开发者的学习曲线
- 保持系统的运行时性能
这种模式不仅适用于Anoma项目,也可以推广到其他基于Elixir的分布式系统开发中,特别是那些需要处理多种事件类型的场景。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~057CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
47
248

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
346
381

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
871
516

React Native鸿蒙化仓库
C++
179
263

openGauss kernel ~ openGauss is an open source relational database management system
C++
131
184

deepin linux kernel
C
22
5

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
335
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
31
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0