Anoma项目中的事件结构体与过滤器自动化实践
2025-05-06 03:53:37作者:羿妍玫Ivan
在区块链节点开发过程中,事件处理是一个常见且重要的模式。Anoma项目作为一个隐私保护的分布式账本平台,其节点实现中也需要处理各种类型的事件。本文将深入探讨如何通过宏来简化事件结构体定义及其过滤器的创建过程。
事件处理的基本模式
在Elixir实现的Anoma节点中,事件通常采用嵌套结构体来表示。一个典型的事件处理流程包含三个层级:
- 最外层是EventBroker.Event,作为事件总线的基础结构
- 中间层是Node.Event,表示节点级别的事件
- 最内层是具体的事件体,如Mempool.TxEvent等
这种分层设计使得事件系统具有良好的扩展性和组织性,但也带来了重复代码的问题。每次定义新的事件类型时,开发者都需要手动编写相应的过滤器代码。
传统实现方式的问题
以交易事件为例,传统实现需要分别定义结构体和过滤器:
typedstruct module: TxEvent do
field(:id, binary())
field(:tx, Mempool.Tx.t())
end
deffilter TxFilter do
%EventBroker.Event{body: %Node.Event{body: %Mempool.TxEvent{}}} ->
true
_ ->
false
end
这种实现方式存在几个明显问题:
- 重复劳动:每次新增事件类型都需要编写几乎相同的过滤器代码
- 维护困难:当事件层级或命名发生变化时,需要手动更新所有相关过滤器
- 容易出错:手写模式匹配容易遗漏某些情况或写错结构路径
宏解决方案的设计
为了解决上述问题,我们可以设计一个名为eventstruct的宏,它能够同时生成事件结构体和对应的过滤器。这个宏应该:
- 继承
typedstruct的所有功能,保持类型定义的能力 - 自动生成基于事件路径的过滤器
- 支持自定义过滤器逻辑的扩展
- 保持生成的代码可读性和可调试性
实现细节
eventstruct宏的实现需要考虑几个关键点:
- 模块路径解析:需要正确处理嵌套模块名,如将
Mempool.TxEvent转换为Mempool.TxFilter - 事件路径构建:自动生成从EventBroker到具体事件的完整路径匹配模式
- 类型系统集成:保持与Elixir类型系统的兼容性
- 宏卫生性:避免宏展开时的命名冲突问题
一个可能的实现方案如下:
defmacro eventstruct(do: block) do
quote do
typedstruct unquote(block)
Module.concat(__MODULE__, "Filter")
|> Module.create(
quote do
use EventBroker.Filter
def match(%EventBroker.Event{
body: %Node.Event{
body: %unquote(__MODULE__){}
}
}), do: true
def match(_), do: false
end,
Macro.Env.location(__ENV__)
)
end
end
使用示例
使用新的eventstruct宏后,代码可以简化为:
eventstruct module: TxEvent do
field(:id, binary())
field(:tx, Mempool.Tx.t())
end
这相当于同时定义了TxEvent结构体和TxEvent.Filter模块,大大减少了样板代码。
进阶用法
对于需要自定义过滤逻辑的场景,可以扩展宏以支持选项:
eventstruct module: CustomEvent do
field(:data, term())
filter do
%CustomEvent{data: data} when is_binary(data) -> true
_ -> false
end
end
这种设计既保持了简洁性,又提供了足够的灵活性。
性能考量
虽然宏会增加编译时间,但在运行时性能上:
- 生成的过滤器代码与手写代码完全相同
- 模式匹配是Elixir的核心特性,非常高效
- 结构体访问在BEAM虚拟机中经过优化
因此,这种方案不会引入额外的运行时开销。
总结
通过eventstruct宏,Anoma项目可以:
- 减少事件系统相关的样板代码
- 提高代码一致性和可维护性
- 降低新开发者的学习曲线
- 保持系统的运行时性能
这种模式不仅适用于Anoma项目,也可以推广到其他基于Elixir的分布式系统开发中,特别是那些需要处理多种事件类型的场景。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
445
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
823
398
Ascend Extension for PyTorch
Python
251
285
React Native鸿蒙化仓库
JavaScript
278
329
暂无简介
Dart
702
166
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
142
51
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
679
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
557
111