themis项目最佳实践教程
2025-05-08 13:24:29作者:晏闻田Solitary
1. 项目介绍
themis 是一个由 tidymodels 团队开发的开源项目,旨在为机器学习项目提供一套完整的工具,帮助用户从数据准备到模型评估的全过程。该项目基于 R 语言,提供了易于使用和理解的接口,适合不同水平的数据科学家和分析师。
2. 项目快速启动
在开始使用 themis 之前,请确保你已经安装了 R 和 RStudio。以下是快速启动 themis 的步骤:
# 安装 themis 包
install.packages("themis")
# 加载 themis 包
library(themis)
# 示例:创建一个简单的数据框
data <- data.frame(
age = c(25, 30, 35, 40, 45),
income = c(50000, 60000, 75000, 80000, 95000),
purchase = c("No", "Yes", "No", "Yes", "Yes")
)
# 使用 themis 准备数据
prepared_data <- themis::prepare(data,
y = purchase,
x = c(age, income),
method = "adult"
)
# 输出准备后的数据
print(prepared_data)
3. 应用案例和最佳实践
数据准备
在机器学习中,数据准备是至关重要的一步。themis 提供了多种方法来处理不平衡数据,以下是使用 themis 进行数据准备的案例:
# 使用合成少数类过采样技术(SMOTE)处理不平衡数据
smote_data <- themis::over_sampling(data,
y = purchase,
method = "smote"
)
# 使用随机欠采样技术处理不平衡数据
undersampled_data <- themis::under_sampling(data,
y = purchase,
method = "random"
)
模型训练
使用 themis 准备好的数据,可以训练机器学习模型。以下是使用决策树模型进行训练的案例:
# 训练模型
model <- themis::train_model(
method = "rpart",
data = prepared_data,
y = purchase
)
# 打印模型摘要
print(model$fit)
模型评估
在模型训练完成后,需要对模型进行评估。themis 提供了评估模型性能的工具:
# 评估模型
evaluation <- themis::evaluate_model(
model = model$fit,
data = prepared_data,
y = purchase
)
# 打印评估结果
print(evaluation)
4. 典型生态项目
themis 是 tidymodels 生态系统的一部分,该生态系统中还有其他多个项目,它们共同提供了一套完整的机器学习工作流程。以下是一些典型的生态项目:
tidyverse:一套用于数据科学和机器学习的 R 包集合。recipes:提供了一个框架,用于构建和测试数据预处理步骤。modeldata:提供了机器学习模型的数据集。parnip:用于构建和评估机器学习模型的通用接口。
通过结合使用这些项目,数据科学家可以更加高效地完成机器学习任务。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
305
130
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言测试用例。
Cangjie
43
872