themis项目最佳实践教程
2025-05-08 02:21:17作者:晏闻田Solitary
1. 项目介绍
themis 是一个由 tidymodels 团队开发的开源项目,旨在为机器学习项目提供一套完整的工具,帮助用户从数据准备到模型评估的全过程。该项目基于 R 语言,提供了易于使用和理解的接口,适合不同水平的数据科学家和分析师。
2. 项目快速启动
在开始使用 themis 之前,请确保你已经安装了 R 和 RStudio。以下是快速启动 themis 的步骤:
# 安装 themis 包
install.packages("themis")
# 加载 themis 包
library(themis)
# 示例:创建一个简单的数据框
data <- data.frame(
age = c(25, 30, 35, 40, 45),
income = c(50000, 60000, 75000, 80000, 95000),
purchase = c("No", "Yes", "No", "Yes", "Yes")
)
# 使用 themis 准备数据
prepared_data <- themis::prepare(data,
y = purchase,
x = c(age, income),
method = "adult"
)
# 输出准备后的数据
print(prepared_data)
3. 应用案例和最佳实践
数据准备
在机器学习中,数据准备是至关重要的一步。themis 提供了多种方法来处理不平衡数据,以下是使用 themis 进行数据准备的案例:
# 使用合成少数类过采样技术(SMOTE)处理不平衡数据
smote_data <- themis::over_sampling(data,
y = purchase,
method = "smote"
)
# 使用随机欠采样技术处理不平衡数据
undersampled_data <- themis::under_sampling(data,
y = purchase,
method = "random"
)
模型训练
使用 themis 准备好的数据,可以训练机器学习模型。以下是使用决策树模型进行训练的案例:
# 训练模型
model <- themis::train_model(
method = "rpart",
data = prepared_data,
y = purchase
)
# 打印模型摘要
print(model$fit)
模型评估
在模型训练完成后,需要对模型进行评估。themis 提供了评估模型性能的工具:
# 评估模型
evaluation <- themis::evaluate_model(
model = model$fit,
data = prepared_data,
y = purchase
)
# 打印评估结果
print(evaluation)
4. 典型生态项目
themis 是 tidymodels 生态系统的一部分,该生态系统中还有其他多个项目,它们共同提供了一套完整的机器学习工作流程。以下是一些典型的生态项目:
tidyverse:一套用于数据科学和机器学习的 R 包集合。recipes:提供了一个框架,用于构建和测试数据预处理步骤。modeldata:提供了机器学习模型的数据集。parnip:用于构建和评估机器学习模型的通用接口。
通过结合使用这些项目,数据科学家可以更加高效地完成机器学习任务。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178