Comet-LLM项目中LangChain流式模式下的追踪数据收集问题解析
2025-06-01 07:12:16作者:傅爽业Veleda
背景介绍
在Comet-LLM项目中,开发者在使用LangChain的ChatAnthropic包装器构建LLM链并启用流式模式时,遇到了一个典型的技术挑战:追踪数据在流式处理过程中分散存储,导致评估实验难以正常进行。这个问题特别出现在使用.astream()方法时,输入和输出数据没有按照预期存储在追踪链的标准字段中。
问题现象
当开发者使用LangChain的ChatAnthropic包装器构建LLM链并启用流式模式时,会出现以下现象:
- 追踪链的"input"字段为空字符串
- RAG上下文虽然被注入到ChatPromptTemplate阶段,但在追踪链中不可见
- 完整信息仅出现在ChatAnthropic阶段,但使用了不同的字段标识符:
- 使用"prompts"而非标准的"input"字段
- 输出存储在"generations"数组结构中
技术分析
这个问题源于LangChain在流式模式下的特殊数据处理方式。在非流式模式下,LangChain会将完整的输入输出数据存储在标准字段中,但在流式模式下:
- 数据被分割处理,导致完整信息分散在多个span中
- 不同组件使用不同的字段命名约定
- 流式处理优化了响应速度,但牺牲了数据结构的统一性
临时解决方案
开发者提供了一个有效的临时解决方案,通过以下步骤重建数据集:
- 搜索包含特定标签的追踪记录
- 对于每条追踪记录,搜索所有相关span
- 从不同span中提取所需信息:
- 从ChatPromptTemplate span获取上下文
- 从ChatAnthropic span获取完整提示
- 从StrOutputParser span获取LLM响应
- 将这些信息重组为符合评估要求的数据集格式
# 示例代码展示了如何重组数据
dataset.insert([
{"user_question": prompt, "assistant_answer": output},
])
官方响应与未来改进
Comet-LLM团队确认了这个问题,并提出了可能的改进方向:
- 修改SDK以从嵌套span中收集数据并存储在追踪中
- 保持流式和非流式模式下数据存储的一致性
- 考虑添加字段映射功能,但需要评估其必要性
最佳实践建议
基于当前情况,建议开发者:
- 对于流式处理场景,采用上述数据重组方法
- 关注Comet-LLM的更新,特别是关于流式模式改进的版本
- 在评估实验前,先验证追踪数据是否完整
- 考虑在非关键场景下使用非流式模式进行开发和测试
总结
Comet-LLM与LangChain的集成在流式处理场景下存在数据追踪的挑战,但通过合理的数据重组方法可以解决。这个问题反映了流式处理与监控系统集成时的常见痛点,也展示了开源社区通过协作解决问题的典型过程。随着Comet-LLM项目的持续发展,这个问题有望得到更优雅的解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134