PyTorch RL框架中多数据收集器的批次帧数配置优化
2025-06-29 22:14:40作者:平淮齐Percy
背景与现状分析
在强化学习训练过程中,数据收集器(DataCollector)扮演着关键角色,它负责从环境中采样数据以供模型学习。PyTorch RL框架中的_MultiDataCollector类目前采用统一的frames_per_batch参数配置,即所有工作进程(worker)都使用相同的帧数设置。
这种设计在以下场景中会显现出局限性:
- 当不同工作进程处理的环境具有显著不同的计算复杂度时
- 当需要为不同类型的环境分配不同采样权重时
- 当某些环境需要更多探索样本而其他环境需要更多利用样本时
技术方案设计
核心改进思路
新方案引入了两种配置方式:
- 传统方式:
frames_per_batch- 所有工作进程共享同一配置 - 增强方式:
frames_per_batch_worker- 为每个工作进程单独指定帧数
这两种配置方式互斥,当使用增强方式时,系统会自动计算总帧数为各工作进程帧数之和。
实现细节
在底层实现上,改进涉及以下关键点:
- 参数验证机制:确保两种配置方式不会同时被使用
- 帧数分配逻辑:将指定的帧数合理分配到各个工作进程
- 数据拼接兼容性:确保不同工作进程产生的不同形状数据能够正确拼接
技术优势
- 资源利用率优化:可以根据环境复杂度动态分配计算资源
- 训练灵活性增强:支持对不同类型环境采用差异化采样策略
- 向后兼容:保留原有接口,不影响现有代码
应用场景示例
假设我们有一个包含两种环境的强化学习任务:
- 简单环境:计算速度快,单次交互耗时短
- 复杂环境:计算速度慢,单次交互耗时长
使用改进后的收集器,我们可以为简单环境分配更多帧数,为复杂环境分配较少帧数,这样既能充分利用简单环境的快速采样能力,又能确保复杂环境获得足够的样本。
实现考量
在实现过程中需要特别注意:
- 异步收集器:由于数据不会堆积,实现相对简单
- 同步收集器:需要确保不同工作进程产生的数据形状能够兼容拼接
- 错误处理:需要完善的参数验证和错误提示机制
总结
PyTorch RL框架对多数据收集器的这一改进,为复杂强化学习任务的采样策略提供了更精细的控制能力。通过允许为不同工作进程配置不同的采样帧数,研究人员和开发者可以:
- 更合理地分配计算资源
- 实现更灵活的探索-利用平衡
- 针对异构环境优化采样效率
这一改进保持了框架的简洁性,同时提供了更强的灵活性,是框架功能演进的一个典型范例。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.18 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492