Keras团队keras-io项目中的手写识别示例迁移至Keras 3的技术解析
在将Keras 2的手写识别示例迁移到Keras 3的过程中,开发者遇到了一个关键的技术挑战:CTC(Connectionist Temporal Classification)批处理成本函数的兼容性问题。这个问题直接影响了基于CTC损失函数的手写识别模型的实现。
CTC是一种常用于序列识别任务的损失函数,特别是在手写识别和语音识别领域。它能够处理输入和输出序列长度不一致的情况,非常适合处理手写文本识别这类问题。
在Keras 2的实现中,开发者可以直接通过keras.backend.ctc_batch_cost来调用CTC损失函数。然而在迁移到Keras 3时,这个API接口发生了变化,导致出现"AttributeError: module 'keras.backend' has no attribute 'ctc_batch_cost'"的错误。
Keras 3对后端系统进行了重大重构,旨在支持多框架后端(TensorFlow、JAX和PyTorch)。这种架构变化导致了一些Keras 2中的后端函数在Keras 3中不再直接可用。对于CTC损失函数,Keras团队建议开发者参考他们已经迁移完成的示例代码,这些示例展示了如何在Keras 3中正确实现CTC损失。
在实际解决方案中,开发者可以考虑以下几种方法:
- 直接使用TensorFlow的实现方式,将CTC损失函数代码直接嵌入到示例中
- 等待Keras 3官方提供对CTC损失函数的完整支持
- 参考Keras团队已经完成迁移的其他类似示例(如验证码识别示例)的实现方式
值得注意的是,Keras团队已经完成了手写识别示例的Keras 3迁移工作,开发者可以直接参考官方文档中的最新实现。这个迁移过程展示了深度学习框架版本升级时可能遇到的典型兼容性问题,以及如何通过参考官方资源和现有实现来解决这些问题。
对于深度学习开发者来说,理解框架版本间的API变化和迁移策略是非常重要的技能。在处理类似问题时,建议首先查阅官方文档和示例,其次考虑社区解决方案,最后才是自行实现替代方案。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00