langchain-ChatGLM项目中Agent工具调用参数格式问题分析与解决方案
问题背景
在langchain-ChatGLM项目实际应用中,开发者发现当使用Agent进行对话时,模型在调用工具时无法正确生成工具调用参数。具体表现为:当用户查询"印度高温"相关信息时,模型生成的搜索参数格式不符合预期,导致工具调用失败。
问题现象分析
典型错误示例如下:
{
"action": "search_internet",
"action_input": {
"query": {
"title": "recent India heatwave disaster report",
"description": "search for recent heatwave disaster news in India",
"type": "string"
}
}
}
错误信息显示:
ValidationError: 1 validation error for search_internetSchema
query
str type expected (type=type_error.str)
问题核心在于模型生成的参数结构与工具期望的参数格式不匹配。工具期望接收一个简单的字符串作为查询参数,但模型却生成了一个包含title、description和type的复杂JSON对象。
技术原理探究
这个问题涉及到以下几个技术层面:
-
Agent工具调用机制:在LangChain框架中,Agent负责决定何时以及如何调用工具。模型需要准确理解工具的参数要求并生成正确的调用格式。
-
提示工程(Prompt Engineering):模型的工具调用行为很大程度上受系统提示词的影响。不恰当的提示词可能导致模型对工具参数格式理解偏差。
-
模型微调适配:不同基础模型对工具调用的支持程度不同,有些模型可能需要额外的微调才能正确理解工具参数格式。
解决方案比较
方案一:修改提示词
有开发者尝试修改系统提示词,在setting.py中添加:
"Thought: you should always think about the correct input format and what to do\n"
这种方法有一定效果但不稳定,模型有时能生成正确格式,有时仍会出错。这表明仅靠提示词调整无法完全解决问题。
方案二:适配工具参数格式
更可靠的解决方案是修改工具实现,使其能够处理模型生成的参数格式。例如修改search_internet.py:
from typing import Dict, List, Union, Any
QueryType = Dict[str, str]
@regist_tool(title="互联网搜索")
def search_internet(query: QueryType = Field(description="query for Internet search")):
"""Use this tool to use bing search engine to search the internet and get information."""
return BaseToolOutput(search_engine(query=query['title']), format=format_context)
这种方法通过调整工具实现来适配模型输出,虽然解决了问题,但属于"削足适履"的方案,可能影响工具的通用性。
方案三:更换基础模型
项目维护者建议,对于GLM4模型可能存在工具调用适配问题,可以尝试更换为Qwen等对工具调用支持更好的模型。这表明不同基础模型在工具调用能力上存在差异。
最佳实践建议
-
模型选择:优先选择对工具调用支持良好的基础模型,如Qwen系列。
-
提示词优化:在系统提示词中明确强调参数格式要求,可以结合few-shot示例展示正确的调用方式。
-
工具适配:在无法更换模型的情况下,可以适当调整工具实现来适配模型输出,但要注意保持接口一致性。
-
监控与反馈:建立完善的错误处理机制,当工具调用失败时给模型提供明确的格式错误反馈,帮助模型学习正确的调用方式。
总结
工具调用是Agent系统的核心能力,正确的参数格式生成直接影响系统可靠性。开发者需要根据实际情况,在模型选择、提示工程和工具适配等多个层面进行优化,才能构建稳定可靠的Agent系统。随着大模型技术的发展,预计未来模型对工具调用的支持会越来越完善,这类问题将逐渐减少。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









