首页
/ langchain-ChatGLM项目中Agent工具调用参数格式问题分析与解决方案

langchain-ChatGLM项目中Agent工具调用参数格式问题分析与解决方案

2025-05-04 00:13:26作者:齐冠琰

问题背景

在langchain-ChatGLM项目实际应用中,开发者发现当使用Agent进行对话时,模型在调用工具时无法正确生成工具调用参数。具体表现为:当用户查询"印度高温"相关信息时,模型生成的搜索参数格式不符合预期,导致工具调用失败。

问题现象分析

典型错误示例如下:

{
  "action": "search_internet",
  "action_input": {
    "query": {
      "title": "recent India heatwave disaster report",
      "description": "search for recent heatwave disaster news in India",
      "type": "string"
    }
  }
}

错误信息显示:

ValidationError: 1 validation error for search_internetSchema
query
  str type expected (type=type_error.str)

问题核心在于模型生成的参数结构与工具期望的参数格式不匹配。工具期望接收一个简单的字符串作为查询参数,但模型却生成了一个包含title、description和type的复杂JSON对象。

技术原理探究

这个问题涉及到以下几个技术层面:

  1. Agent工具调用机制:在LangChain框架中,Agent负责决定何时以及如何调用工具。模型需要准确理解工具的参数要求并生成正确的调用格式。

  2. 提示工程(Prompt Engineering):模型的工具调用行为很大程度上受系统提示词的影响。不恰当的提示词可能导致模型对工具参数格式理解偏差。

  3. 模型微调适配:不同基础模型对工具调用的支持程度不同,有些模型可能需要额外的微调才能正确理解工具参数格式。

解决方案比较

方案一:修改提示词

有开发者尝试修改系统提示词,在setting.py中添加:

"Thought: you should always think about the correct input format and what to do\n"

这种方法有一定效果但不稳定,模型有时能生成正确格式,有时仍会出错。这表明仅靠提示词调整无法完全解决问题。

方案二:适配工具参数格式

更可靠的解决方案是修改工具实现,使其能够处理模型生成的参数格式。例如修改search_internet.py:

from typing import Dict, List, Union, Any

QueryType = Dict[str, str]

@regist_tool(title="互联网搜索")
def search_internet(query: QueryType = Field(description="query for Internet search")):
    """Use this tool to use bing search engine to search the internet and get information."""
    return BaseToolOutput(search_engine(query=query['title']), format=format_context)

这种方法通过调整工具实现来适配模型输出,虽然解决了问题,但属于"削足适履"的方案,可能影响工具的通用性。

方案三:更换基础模型

项目维护者建议,对于GLM4模型可能存在工具调用适配问题,可以尝试更换为Qwen等对工具调用支持更好的模型。这表明不同基础模型在工具调用能力上存在差异。

最佳实践建议

  1. 模型选择:优先选择对工具调用支持良好的基础模型,如Qwen系列。

  2. 提示词优化:在系统提示词中明确强调参数格式要求,可以结合few-shot示例展示正确的调用方式。

  3. 工具适配:在无法更换模型的情况下,可以适当调整工具实现来适配模型输出,但要注意保持接口一致性。

  4. 监控与反馈:建立完善的错误处理机制,当工具调用失败时给模型提供明确的格式错误反馈,帮助模型学习正确的调用方式。

总结

工具调用是Agent系统的核心能力,正确的参数格式生成直接影响系统可靠性。开发者需要根据实际情况,在模型选择、提示工程和工具适配等多个层面进行优化,才能构建稳定可靠的Agent系统。随着大模型技术的发展,预计未来模型对工具调用的支持会越来越完善,这类问题将逐渐减少。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
78
72
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
349
1.36 K
giteagitea
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
207
285
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
17