OpenObserve 自定义仪表板中 ECharts 配置与 SQL 数据集成指南
2025-05-15 00:54:45作者:柯茵沙
前言
在现代数据可视化领域,OpenObserve 作为一款优秀的开源项目,为用户提供了强大的自定义仪表板功能。本文将详细介绍如何在 OpenObserve 的自定义仪表板中,将 SQL 查询结果与 ECharts 图表配置完美结合,实现高度定制化的数据可视化效果。
数据准备与查询
在 OpenObserve 中,我们可以通过 SQL 查询获取需要展示的数据。以一个典型的时间序列数据为例,我们可以使用如下 SQL 查询:
SELECT histogram(_timestamp) as ts, count(*) as cnt
FROM default
GROUP BY ts
ORDER BY ts
这条查询会返回两个字段:ts(时间戳)和 cnt(计数),并按时间戳排序。
数据结构解析
查询返回的数据在 JavaScript 环境中会以特定格式呈现。理解这个数据结构是成功配置 ECharts 的关键。查询结果通常以二维数组形式返回,其中每个元素是一个包含字段值的对象:
data = [
[
{"cnt": 2123, "ts": "2025-03-10T03:47:20"},
{"cnt": 1233, "ts": "2025-03-10T03:47:20"},
{"cnt": 1223, "ts": "2025-03-21T03:47:20"},
{"cnt": 2122, "ts": "2025-03-30T03:47:20"}
]
]
ECharts 配置详解
要将 SQL 查询结果与 ECharts 图表结合,我们需要对数据进行适当处理。以下是一个完整的折线图配置示例:
option = {
xAxis: {
type: 'category',
data: data[0].map((val) => val.ts) // 提取时间戳作为x轴数据
},
tooltip: {
trigger: 'axis' // 鼠标悬停时显示提示框
},
yAxis: {
type: 'value' // y轴为数值型
},
series: [{
data: data[0].map((val) => val.cnt), // 提取计数值作为y轴数据
type: 'line' // 图表类型为折线图
}]
};
关键点解析
- 数据提取:使用 JavaScript 的
map方法从查询结果中提取特定字段值 - xAxis 配置:将时间戳字段映射为分类轴数据
- series 配置:将计数字段映射为系列数据
- 图表交互:配置 tooltip 实现悬停提示功能
高级应用技巧
多系列图表
如果需要展示多个指标,可以在 series 数组中添加多个对象:
series: [
{
name: '访问量',
data: data[0].map((val) => val.visits),
type: 'line'
},
{
name: '点击量',
data: data[0].map((val) => val.clicks),
type: 'line'
}
]
数据格式化
可以在 tooltip 中添加 formatter 函数对显示内容进行自定义:
tooltip: {
trigger: 'axis',
formatter: function(params) {
return params[0].name + '<br/>' +
params[0].seriesName + ': ' + params[0].value;
}
}
常见问题解决方案
- 数据引用错误:确保正确引用 data 数组的层级(注意 data[0])
- 字段名不匹配:检查 SQL 查询中的字段名与 ECharts 配置中的引用是否一致
- 数据格式问题:时间数据可能需要额外格式化处理
结语
通过本文的介绍,相信您已经掌握了在 OpenObserve 自定义仪表板中集成 SQL 查询结果与 ECharts 图表的方法。这种灵活的配置方式能够满足各种复杂的数据可视化需求,帮助您更好地理解和展示数据。随着对 OpenObserve 的深入使用,您还可以探索更多高级功能和配置选项,打造更加专业的数据分析平台。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137