OpenObserve 自定义仪表板中 ECharts 配置与 SQL 数据集成指南
2025-05-15 03:10:46作者:柯茵沙
前言
在现代数据可视化领域,OpenObserve 作为一款优秀的开源项目,为用户提供了强大的自定义仪表板功能。本文将详细介绍如何在 OpenObserve 的自定义仪表板中,将 SQL 查询结果与 ECharts 图表配置完美结合,实现高度定制化的数据可视化效果。
数据准备与查询
在 OpenObserve 中,我们可以通过 SQL 查询获取需要展示的数据。以一个典型的时间序列数据为例,我们可以使用如下 SQL 查询:
SELECT histogram(_timestamp) as ts, count(*) as cnt
FROM default
GROUP BY ts
ORDER BY ts
这条查询会返回两个字段:ts
(时间戳)和 cnt
(计数),并按时间戳排序。
数据结构解析
查询返回的数据在 JavaScript 环境中会以特定格式呈现。理解这个数据结构是成功配置 ECharts 的关键。查询结果通常以二维数组形式返回,其中每个元素是一个包含字段值的对象:
data = [
[
{"cnt": 2123, "ts": "2025-03-10T03:47:20"},
{"cnt": 1233, "ts": "2025-03-10T03:47:20"},
{"cnt": 1223, "ts": "2025-03-21T03:47:20"},
{"cnt": 2122, "ts": "2025-03-30T03:47:20"}
]
]
ECharts 配置详解
要将 SQL 查询结果与 ECharts 图表结合,我们需要对数据进行适当处理。以下是一个完整的折线图配置示例:
option = {
xAxis: {
type: 'category',
data: data[0].map((val) => val.ts) // 提取时间戳作为x轴数据
},
tooltip: {
trigger: 'axis' // 鼠标悬停时显示提示框
},
yAxis: {
type: 'value' // y轴为数值型
},
series: [{
data: data[0].map((val) => val.cnt), // 提取计数值作为y轴数据
type: 'line' // 图表类型为折线图
}]
};
关键点解析
- 数据提取:使用 JavaScript 的
map
方法从查询结果中提取特定字段值 - xAxis 配置:将时间戳字段映射为分类轴数据
- series 配置:将计数字段映射为系列数据
- 图表交互:配置 tooltip 实现悬停提示功能
高级应用技巧
多系列图表
如果需要展示多个指标,可以在 series 数组中添加多个对象:
series: [
{
name: '访问量',
data: data[0].map((val) => val.visits),
type: 'line'
},
{
name: '点击量',
data: data[0].map((val) => val.clicks),
type: 'line'
}
]
数据格式化
可以在 tooltip 中添加 formatter 函数对显示内容进行自定义:
tooltip: {
trigger: 'axis',
formatter: function(params) {
return params[0].name + '<br/>' +
params[0].seriesName + ': ' + params[0].value;
}
}
常见问题解决方案
- 数据引用错误:确保正确引用 data 数组的层级(注意 data[0])
- 字段名不匹配:检查 SQL 查询中的字段名与 ECharts 配置中的引用是否一致
- 数据格式问题:时间数据可能需要额外格式化处理
结语
通过本文的介绍,相信您已经掌握了在 OpenObserve 自定义仪表板中集成 SQL 查询结果与 ECharts 图表的方法。这种灵活的配置方式能够满足各种复杂的数据可视化需求,帮助您更好地理解和展示数据。随着对 OpenObserve 的深入使用,您还可以探索更多高级功能和配置选项,打造更加专业的数据分析平台。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133