SmolAgents项目中的DuckDuckGo搜索功能优化探讨
在Python生态系统中,SmolAgents作为一个新兴的智能代理框架,其搜索功能的优化一直是开发者关注的重点。近期社区围绕DuckDuckGo搜索工具的依赖问题展开了深入讨论,这反映了现代Python项目中依赖管理的重要性。
传统实现方式依赖于duckduckgo-search第三方库,但这种方式会带来额外的依赖负担。开发者们探索了多种替代方案,试图在不引入外部依赖的情况下实现相同的搜索功能。
通过直接调用DuckDuckGo的API接口是最初尝试的方案。这种方法只需要requests库,代码简洁明了。但实际测试发现,这种API方式存在明显局限:它只能返回单个结果,且返回的数据格式与预期不符,无法满足完整的搜索需求。
更进一步的尝试是模拟浏览器访问DuckDuckGo的轻量版页面(lite.duckduckgo.com)。这种方法理论上可以获取完整的搜索结果列表,但实际运行时会触发网站的反爬虫机制,导致需要人工验证,这在自动化场景中是不可行的。
作为替代方案,开发者还测试了Bing搜索的RSS输出功能。这种方法能够稳定返回搜索结果,虽然结果摘要较为简短,但避免了反爬虫问题。使用标准库xml.etree.ElementTree配合requests就能实现解析,无需额外依赖。
从技术实现角度看,这类搜索功能的优化需要考虑几个关键因素:
- 结果完整性:能否获取足够数量的相关结果
- 稳定性:是否会被目标网站的反爬机制阻断
- 依赖复杂度:是否需要引入额外的第三方库
- 维护成本:实现方案是否依赖未公开的API接口
对于SmolAgents这类框架来说,保持核心功能的轻量级特性尤为重要。开发者需要在功能完整性和依赖简洁性之间找到平衡点。目前看来,采用Bing RSS的方案在依赖管理方面最具优势,虽然结果展示上略有不足,但作为基础搜索功能已经足够。
未来可能的优化方向包括:实现多搜索引擎的fallback机制、开发更智能的反反爬策略,或者提供可插拔的搜索后端接口,让用户可以根据实际需求选择不同的实现方式。这些方案都能在保持核心简洁的同时,满足不同用户对搜索功能的需求。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00