Logfire项目集成FastStream实现分布式追踪
2025-06-26 05:11:31作者:殷蕙予
Logfire作为Pydantic生态下的可观测性工具,近期实现了与FastStream消息处理框架的无缝集成。本文将详细介绍这一集成方案的技术实现细节和最佳实践。
集成背景
FastStream是一个基于Python的高性能消息处理框架,支持Redis、Kafka、RabbitMQ等多种消息代理。其内置了OpenTelemetry支持,这使得与Logfire的集成变得异常简单。
基础集成方案
集成FastStream到Logfire仅需简单配置:
from faststream import FastStream
from faststream.redis import RedisBroker
from faststream.redis.opentelemetry import RedisTelemetryMiddleware
import logfire
# 关键配置步骤
logfire.configure(service_name='faststream-service')
broker = RedisBroker(middlewares=(RedisTelemetryMiddleware(),))
app = FastStream(broker)
@broker.subscriber("test-channel")
async def handle():
await broker.publish("Hi!", channel="another-channel")
这种配置方式会自动将FastStream的处理链路纳入Logfire的追踪体系,在Logfire面板中可以看到完整的消息处理流程。
高级配置选项
对于需要更精细控制的场景,开发者可以自定义TracerProvider:
from dataclasses import dataclass
from opentelemetry.trace import TracerProvider, Tracer
@dataclass
class CustomFaststreamTraceProvider(TracerProvider):
trace_provider: TracerProvider
instrumenting_module_name: str = "custom.faststream.tracer"
def get_tracer(self, instrumenting_module_name: str, *args, **kwargs) -> Tracer:
return self.trace_provider.get_tracer(self.instrumenting_module_name, *args, **kwargs)
def configure_custom_tracing(logfire_instance):
broker.add_middleware(
RabbitTelemetryMiddleware(
tracer_provider=CustomFaststreamTraceProvider(
logfire_instance.config.get_tracer_provider()
)
)
)
这种方案特别适合需要区分不同业务模块追踪的场景。
技术实现原理
-
OpenTelemetry兼容性:FastStream内置了OpenTelemetry中间件,而Logfire基于OpenTelemetry构建,这是两者能够无缝集成的基础
-
追踪上下文传播:消息在发布和订阅过程中会自动携带追踪上下文,确保分布式场景下的调用链路完整
-
异步支持:两者都完美支持Python的异步IO模型,不会对系统性能造成显著影响
最佳实践建议
-
为不同的微服务设置不同的service_name,便于在Logfire中区分
-
对于高吞吐场景,考虑适当调整采样率
-
结合Logfire的指标监控功能,实现消息处理系统的全方位可观测性
-
在开发环境可以使用更详细的日志级别,生产环境则适当调整
这一集成方案已经得到FastStream官方的支持,开发者可以放心在生产环境中使用。通过Logfire和FastStream的组合,开发者能够轻松构建可观测性强的分布式消息处理系统。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++098AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
203
2.18 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
84

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133