解决snmalloc在Apple Silicon Asahi Linux上的段错误问题
snmalloc是微软开发的一款高性能内存分配器,最近在Apple Silicon设备上运行的Asahi Linux系统中出现了一系列段错误(Segmentation Fault)问题。本文将深入分析问题原因并提供解决方案。
问题现象
在Asahi Linux系统上运行snmalloc测试套件时,多个测试用例出现了段错误。通过strace工具追踪系统调用,发现错误与内存保护操作有关:
mprotect(0xffaf10631000, 274877911040, PROT_READ) = -1 EINVAL (Invalid argument)
madvise(0xffaf10631000, 274877911040, MADV_DONTDUMP) = -1 EINVAL (Invalid argument)
--- SIGSEGV {si_signo=SIGSEGV, si_code=SEGV_ACCERR, si_addr=0xffaf10631dc0} ---
根本原因分析
经过调查,发现问题源于Asahi Linux的特殊内存页配置。与传统的x86架构Linux系统使用4KB内存页不同,Asahi Linux采用了16KB对齐的内存页。而snmalloc当前实现中硬编码了4KB页大小的假设,导致内存操作失败。
具体来说,问题出在snmalloc的Linux平台抽象层(PAL)实现中,它直接使用了4096作为页大小常量,而没有考虑不同架构和配置下的页大小差异。
解决方案
针对这个问题,我们提出了两种解决方案:
-
使用系统定义的PAGESIZE宏:Linux系统通常会在编译时定义PAGESIZE宏,可以直接使用这个值。
-
动态查询系统页大小:通过sysconf(_SC_PAGE_SIZE)系统调用在运行时获取实际的系统页大小。
最终实现采用了第一种方案,修改了Posix平台抽象层的代码:
#ifdef PAGESIZE
static constexpr size_t page_size = PAGESIZE;
#else
static constexpr size_t page_size = Aal::smallest_page_size;
#endif
这种修改确保了snmalloc能够适应不同架构和配置下的页大小要求,特别是对于使用16KB页的Asahi Linux系统。
技术背景
理解这个问题需要一些背景知识:
-
内存页大小:现代操作系统使用分页机制管理内存,页大小是基本单位。不同架构可能有不同的默认页大小。
-
Asahi Linux:这是为Apple Silicon(M1/M2等)设备移植的Linux发行版,由于ARM架构特性,使用了16KB页。
-
mprotect系统调用:用于修改内存区域的保护属性,当参数不合法(如未对齐的地址或大小)时会返回EINVAL错误。
影响范围
这个问题不仅影响Asahi Linux,还可能影响其他使用非标准页大小的系统。解决方案的通用性确保了snmalloc在各种环境下的兼容性。
结论
通过这次问题修复,snmalloc增强了对不同内存页大小的支持,提高了在非x86架构和特殊配置系统上的兼容性。这也提醒我们在系统级编程中,应当避免对硬件特性做硬编码假设,而应该使用系统提供的接口动态适应不同环境。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00