NodeRedis连接Azure Redis企业集群时的TLS证书验证问题解析
在使用NodeRedis客户端连接Azure Redis企业版集群时,开发人员可能会遇到一个常见的TLS证书验证问题。本文将深入分析该问题的根源,并提供多种解决方案。
问题现象
当尝试通过私有端点连接到Azure Redis企业集群时,NodeRedis客户端会抛出ERR_TLS_CERT_ALTNAME_INVALID错误。错误信息表明客户端IP地址不在证书的备用名称列表中,证书仅包含类似*.westus3.redisenterprise.cache.azure.net这样的DNS名称。
根本原因分析
这个问题的产生源于几个技术层面的因素:
-
证书验证机制:TLS证书验证要求客户端连接时使用的主机名必须与证书中的Subject Alternative Name (SAN)匹配。Azure Redis企业版证书仅配置了DNS名称,不包含IP地址。
-
集群发现机制:NodeRedis客户端通过CLUSTER SLOTS命令发现集群拓扑时,返回的是节点IP地址而非主机名。当客户端尝试使用IP地址连接这些节点时,就会触发证书验证失败。
-
Azure Redis企业版特性:与开源Redis集群不同,Azure Redis企业版使用固定端口10000作为入口点,内部节点端口则是动态分配的85xx范围端口。
解决方案
方案一:使用nodeAddressMap映射
最推荐的解决方案是利用NodeRedis提供的nodeAddressMap功能,将发现的IP地址映射回有效的主机名:
createCluster({
rootNodes: [{
url: 'my-redis.westus3.redisenterprise.cache.azure.net:10000'
}],
nodeAddressMap(address) {
const [hostAddress, port] = address.split(":");
const host = net.isIP(hostAddress) !== 0 ? 'my-redis.westus3.redisenterprise.cache.azure.net' : hostAddress;
return { host, port: Number(port) };
}
});
这种方法既保持了TLS验证的安全性,又解决了证书不匹配的问题。
方案二:配置多个根节点
如果知道集群中多个节点的地址,可以显式配置多个根节点:
createCluster({
rootNodes: [
{ socket: { host: 'host1', port: 10000, servername: 'my-redis.westus3.redisenterprise.cache.azure.net' }},
{ socket: { host: 'host2', port: 10000, servername: 'my-redis.westus3.redisenterprise.cache.azure.net' }},
{ socket: { host: 'host3', port: 10000, servername: 'my-redis.westus3.redisenterprise.cache.azure.net' }}
]
});
方案三:临时解决方案(不推荐)
作为临时解决方案,可以禁用证书验证:
createCluster({
socket: {
tls: true,
rejectUnauthorized: false
}
});
但这种方法会降低安全性,不建议在生产环境中使用。
最佳实践建议
-
云服务适配:在使用云服务提供的Redis集群时,应优先查阅该云服务的特定文档,了解其集群发现机制和TLS配置要求。
-
证书管理:理想情况下,云服务提供商应在证书中包含IP地址的SAN条目,或者允许配置oss_cluster_api_preferred_endpoint_type参数为hostname。
-
客户端配置:对于生产环境,建议使用nodeAddressMap方案,它既保持了安全性,又能适应云服务的特定架构。
总结
NodeRedis客户端与Azure Redis企业版的集成需要特别注意TLS证书验证的特殊性。通过理解云服务的架构特点和合理配置客户端,可以构建既安全又可靠的Redis集群连接方案。对于云服务用户来说,掌握这些配置技巧对于构建稳定的分布式系统至关重要。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00