ArrayFire项目在Ubuntu系统下的CPU模式安装与测试指南
2025-06-11 23:09:29作者:卓炯娓
ArrayFire是一个高性能的通用计算库,支持CPU、CUDA和OpenCL等多种后端。本文将详细介绍在Ubuntu系统上安装ArrayFire并仅使用CPU后端进行测试的完整流程。
安装前的准备工作
在开始安装前,请确保系统已安装以下依赖项:
- CMake构建工具
- GNU编译器集合(GCC)
- 基本的开发工具链
ArrayFire安装步骤
-
下载ArrayFire安装包 从官方渠道获取适合您系统的ArrayFire安装包,通常是一个.sh格式的安装脚本。
-
执行安装命令
sudo ./ArrayFire-v3.9.0_Linux_x86_64.sh --include-subdir --prefix=/opt -
配置动态链接库路径
sudo echo /opt/arrayfire/lib64 > /etc/ld.so.conf.d/arrayfire.conf sudo ldconfig
仅使用CPU后端进行测试
当您只想测试CPU后端功能时,可能会遇到CUDA相关链接错误。这是因为默认情况下ArrayFire会尝试构建所有后端的示例程序。
解决方案一:明确指定CPU后端
在构建示例程序时,可以通过CMake参数明确指定只构建CPU后端的示例:
cd /tmp/examples/build
cmake -DAF_BUILD_CPU=ON -DAF_BUILD_CUDA=OFF -DAF_BUILD_OPENCL=OFF ..
make
解决方案二:单独运行CPU示例
如果您已经构建了所有示例,可以只运行带有_cpu后缀的可执行文件:
./helloworld/helloworld_cpu
常见问题解析
-
libcuda.so缺失错误 这个错误表明系统尝试链接CUDA库但未找到。如果您确实不需要CUDA功能,应按照上述方法禁用CUDA后端构建。
-
示例程序找不到 确保构建完成后,在正确的目录下寻找可执行文件。CPU后端的示例通常以
_cpu结尾。 -
性能调优建议 在纯CPU模式下,可以通过设置环境变量来优化性能:
export AF_CPU_MKL=1 # 启用Intel MKL加速 export AF_CPU_THREADS=4 # 设置使用的线程数
验证安装成功
运行一个简单的CPU示例程序后,您应该能看到类似以下的输出:
ArrayFire v3.9.0 (CPU, 64-bit Linux, build d9e8fa3)
[0] Intel: Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz, 12000 MB
总结
通过本文介绍的方法,您可以成功在Ubuntu系统上安装ArrayFire并仅使用其CPU后端功能。这种配置特别适合没有NVIDIA GPU的开发环境,或者那些只需要CPU计算能力的应用场景。记住在构建时明确指定后端类型可以避免不必要的依赖问题,使开发过程更加顺畅。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
Ascend Extension for PyTorch
Python
343
411
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
604
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
暂无简介
Dart
775
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
895