Cucumber-JVM项目中使用JUnit5平台引擎执行测试的注意事项
在使用Cucumber-JVM结合JUnit5平台引擎进行自动化测试时,开发者可能会遇到测试用例无法正常执行的问题。本文将通过一个典型场景分析问题原因,并提供解决方案。
问题现象
当开发者按照官方文档配置了Cucumber-JVM的JUnit5平台引擎后,执行mvn clean test命令时,构建虽然成功完成,但实际没有任何测试用例被执行。测试运行器类配置了@Suite注解并指定了特性文件路径和步骤定义位置,但测试框架似乎完全忽略了这些配置。
根本原因分析
经过深入排查,发现问题出在Maven Surefire插件的默认命名约定上。Maven Surefire插件默认只执行符合特定命名模式的测试类:
- 以
Test开头或结尾的类名 - 或以
TestCase结尾的类名
在JUnit4时代,这一约定同样适用,但由于历史原因,许多开发者可能没有注意到这一点。当使用JUnit5平台引擎时,如果测试运行器类不符合这些命名模式,Maven Surefire插件会直接跳过执行。
解决方案
要解决这个问题,有以下几种方法:
方法一:重命名测试运行器类
最简单的解决方案是将测试运行器类重命名,使其符合Maven Surefire插件的默认命名约定。例如:
@Suite
@IncludeEngines("cucumber")
@SelectClasspathResource("tv/features")
@ConfigurationParameter(key = Constants.GLUE_PROPERTY_NAME, value = "tv.features")
public class TVTest { // 注意类名以Test结尾
// 类内容保持不变
}
方法二:配置Maven Surefire插件
如果希望保持原有的类名不变,可以在pom.xml中显式配置Surefire插件,指定要包含的测试类:
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<version>3.1.2</version>
<configuration>
<includes>
<include>**/TVTestRunner.java</include>
</includes>
</configuration>
</plugin>
方法三:使用JUnit5的@Suite注解
确保正确使用JUnit5的套件注解组合:
import org.junit.platform.suite.api.*;
@Suite
@IncludeEngines("cucumber")
@SelectClasspathResource("tv/features")
@ConfigurationParameter(key = Constants.GLUE_PROPERTY_NAME, value = "tv.features")
public class TVTestSuite {
// 测试套件配置
}
最佳实践建议
-
遵循命名约定:建议始终遵循Maven Surefire插件的默认命名约定,这样可以减少配置复杂度,也便于团队协作。
-
明确包含规则:在大型项目中,建议显式配置Surefire插件的包含/排除规则,避免意外执行或跳过测试。
-
版本兼容性:确保所有相关依赖版本兼容,特别是JUnit Platform、JUnit Jupiter和Cucumber-JVM的版本组合。
-
日志调试:当测试未按预期执行时,可以增加Surefire插件的日志级别来获取更多调试信息:
<configuration>
<debug>true</debug>
<forkCount>0</forkCount> <!-- 禁用并行以获取更清晰的日志 -->
</configuration>
通过理解Maven构建工具与测试框架之间的交互机制,开发者可以更有效地配置和执行Cucumber-JVM测试,确保自动化测试流程的可靠性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00