EntityFramework Core 9.0性能优化:提升Liftable常量解析器编译效率
在EntityFramework Core 9.0版本中,开发团队发现了一个影响查询性能的重要问题。这个问题主要出现在处理LiftableConstantExpressions时,特别是在非AOT(提前编译)模式下运行时。
问题背景
在EntityFramework Core的查询处理过程中,系统需要处理所谓的"LiftableConstantExpressions"(可提升常量表达式)。这些表达式在常规模式下会被编译成一个解析器lambda,然后被求值以获取实际用于查询计划的常量值。
问题的核心在于,当这些表达式本身包含或本身就是委托(delegate)时,系统在解释模式下进行编译会导致显著的性能下降和内存分配增加。这种编译方式不仅影响执行速度,还会带来额外的内存分配负担。
性能影响
通过基准测试可以清楚地看到这个问题的影响:
优化前:
- 平均执行时间:487ms
- 内存分配:103.29MB
- 垃圾回收(Gen0):17000次
优化后:
- 平均执行时间:455ms(同步)和435ms(异步)
- 内存分配:67.92MB
- 垃圾回收(Gen0):11000次
从数据可以看出,优化后性能提升了约10%,内存分配减少了34%,垃圾回收次数也显著降低。
技术细节
问题的根本原因在于解释模式下的lambda编译。当表达式包含嵌套的lambda时,解释模式的编译效率远低于直接编译模式。这可以通过一个简单的基准测试来验证:
// 直接编译模式
var compiled = expression.Compile()("_");
// 解释编译模式
var compiledInterpreted = expression.Compile(preferInterpretation: true)("_");
测试结果显示:
- 直接编译模式:65.69微秒,468.75KB内存
- 解释编译模式:930.20微秒,2656.25KB内存
解释编译模式的执行时间增加了14倍,内存使用增加了5.6倍。
解决方案
开发团队通过修改编译策略解决了这个问题。当检测到解析器本身包含lambda表达式时,系统会避免使用解释模式进行编译,转而使用更高效的直接编译模式。这一优化显著减少了内存分配和垃圾回收压力,同时提高了查询执行速度。
实际影响
这一优化对于使用复杂查询的应用程序尤为重要,特别是那些包含多个Include操作的查询。在实际应用中,这意味着:
- 更快的查询响应时间
- 更少的内存占用
- 更低的GC压力
- 更好的整体应用性能
结论
EntityFramework Core团队持续关注性能优化,这次对Liftable常量解析器的改进是9.0.1版本中的重要优化之一。对于使用EF Core的开发者来说,升级到包含此修复的版本可以显著提升应用程序的性能表现,特别是在处理复杂查询场景时。
这一优化也提醒我们,在ORM框架中,表达式树的处理方式对性能有着重大影响,合理选择编译策略可以带来显著的性能提升。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00