Wenet项目中Paraformer模型ONNX导出问题解析
问题背景
在使用Wenet 3.0.0版本进行Paraformer模型训练和导出时,用户遇到了两个主要的技术问题。首先是在尝试将PyTorch模型导出为ONNX格式时出现了protobuf版本兼容性问题,其次是在解决第一个问题后又遇到了模型初始化参数不匹配的错误。
问题分析
Protobuf版本兼容性问题
当用户尝试导出ONNX模型时,系统报错提示"Descriptors cannot be created directly",这是由于protobuf 4.25.2版本与ONNX之间的兼容性问题导致的。这个错误在protobuf 3.20.x之后的版本中较为常见,主要是因为protobuf库的内部实现发生了变化。
模型初始化参数问题
在设置环境变量PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python后,虽然解决了protobuf的问题,但又出现了新的错误:"init() got an unexpected keyword argument 'upsample_type'"。这表明在模型初始化时,传入了一个不被识别的参数upsample_type。
解决方案
针对protobuf版本问题
有两种可行的解决方案:
- 降级protobuf到3.20.x或更低版本
- 设置环境变量PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python(但会使用纯Python解析,性能较低)
针对模型参数问题
这个问题源于训练配置文件中predictor部分的配置与代码实现不匹配。需要检查train.yaml配置文件中predictor部分的参数设置,确保不包含upsample_type这个字段,或者使用项目提供的修复方案。
技术建议
-
版本管理:在使用深度学习框架时,特别是涉及模型导出时,建议严格管理依赖库的版本,特别是protobuf、ONNX等核心库。
-
配置检查:在模型训练和导出过程中,应仔细检查配置文件与代码实现的匹配性,特别是新增的参数和功能。
-
环境隔离:建议使用虚拟环境或容器技术隔离不同项目的运行环境,避免库版本冲突。
-
模型兼容性:在尝试新功能时,应先确认官方文档或代码库中的相关说明,了解功能的支持情况。
总结
Wenet项目中Paraformer模型的ONNX导出问题主要源于库版本兼容性和配置不匹配两个方面。通过合理管理依赖版本和仔细检查配置文件,可以有效解决这些问题。对于深度学习开发者而言,理解这些问题的根源有助于在类似场景下快速定位和解决问题。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0286Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









