HI-SLAM2 的安装和配置教程
2025-05-15 04:05:20作者:凌朦慧Richard
1. 项目基础介绍
HI-SLAM2 是一个开源的视觉同步定位与地图构建(Visual Simultaneous Localization and Mapping,VSLAM)项目。它主要使用相机图像数据进行位置估计和三维地图构建。项目使用 C++ 作为主要的编程语言,同时依赖于一些常用的开源库和框架。
2. 项目使用的关键技术和框架
HI-SLAM2 使用了以下关键技术和框架:
- ORB(Oriented FAST and Rotated BRIEF): 作为特征点检测和描述的主要算法。
- PnP(Perspective-n-Point): 用于从图像中恢复相机的位置和旋转。
- BoW(Bag of Words): 用于特征点匹配和检索。
- g2o(graph slam for optimization): 进行位姿图优化,用于提高定位和建图的准确性。
- ROS(Robot Operating System): 作为项目的运行框架,便于集成其他模块和进行调试。
3. 项目安装和配置的准备工作及详细步骤
准备工作
在开始安装之前,请确保您的计算机满足以下要求:
- 操作系统:Ubuntu 16.04/18.04
- 编译器:CMake 3.3.2 或更高版本,GCC 4.8 或更高版本
- ROS:Kinetic Kame 或 Melodic Morenia
- 其他依赖库:Eigen3, PCL,Sophus,Opencv3, DBoW2, g2o
安装步骤
-
安装ROS
首先确保您的系统是Ubuntu 16.04/18.04。然后按照以下步骤安装ROS:
sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" > /etc/apt/sources.list.d/ros-latest.list' sudo apt-key adv --keyserver 'hkp://keyserver.ubuntu.com:80' --recv-key C1AB517F32F8C9B6C7E0F4658E17B9B8A25FFD2 sudo apt-get update sudo apt-get install ros-kinetic-ros-core对于不同的Ubuntu版本和ROS版本,安装命令可能有所不同。
-
安装依赖库
接下来,安装HI-SLAM2所需的依赖库:
sudo apt-get install libeigen3-dev sudo apt-get install libpcl-1.8-dev sudo apt-get install libopencv-dev sudo apt-get install libSophus-dev sudo apt-get install libboost-all-dev sudo apt-get install libceres-dev sudo apt-get install libgflags-dev sudo apt-get install libgoogle-glog-dev -
编译和安装HI-SLAM2
克隆项目仓库并编译:
git clone https://github.com/Willyzw/HI-SLAM2.git cd HI-SLAM2 chmod +x build.sh ./build.sh运行
build.sh脚本会自动执行CMake配置、编译和安装过程。 -
配置环境
编译完成后,您需要将HI-SLAM2添加到ROS工作空间:
source ~/catkin_ws/devel/setup.bash请确保将
~/catkin_ws替换为您实际的ROS工作空间路径。
完成以上步骤后,您应该已经成功安装了HI-SLAM2,并可以开始进行进一步的配置和测试了。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
307
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882