JavaGuide项目SQL面试题解析:顾客订单总金额计算
2025-04-26 14:01:18作者:姚月梅Lane
在JavaGuide项目的SQL面试题总结中,有一个关于计算顾客订单总金额的题目引起了我的注意。这个题目看似简单,但其中隐藏着一些值得深入探讨的技术细节。
问题背景
题目要求我们编写SQL语句,返回每个顾客ID及其对应的所有订单总金额,并按金额从大到小排序。数据库中有两个表:
- OrderItems表:包含订单号(order_num)、商品价格(item_price)和商品数量(quantity)
- Orders表:包含订单号(order_num)和顾客ID(cust_id)
常见解决方案分析
连接表方案
最直观的解决方案是使用表连接:
SELECT b.cust_id, SUM(a.quantity * a.item_price) AS total_ordered
FROM OrderItems a, Orders b
WHERE a.order_num = b.order_num
GROUP BY cust_id
ORDER BY total_ordered DESC
这种方案直接通过订单号连接两个表,然后按顾客ID分组计算总和。逻辑清晰,执行效率也较高。
子查询方案
题目还要求使用子查询来实现。初始的子查询方案如下:
SELECT o.cust_id AS cust_id, tb.total_ordered AS total_ordered
FROM (SELECT order_num, Sum(item_price * quantity) AS total_ordered
FROM OrderItems
GROUP BY order_num) AS tb,
Orders o
WHERE tb.order_num = o.order_num
ORDER BY total_ordered DESC
这个方案存在一个关键问题:它只计算了每个订单的总金额,但没有对顾客ID进行分组汇总。这会导致如果一个顾客有多个订单,查询结果会返回多条记录而不是汇总后的总金额。
正确的子查询实现
正确的子查询实现应该在外部查询中对顾客ID进行分组:
SELECT o.cust_id, SUM(tb.total_ordered) AS total_ordered
FROM (SELECT order_num, SUM(item_price * quantity) AS total_ordered
FROM OrderItems
GROUP BY order_num) AS tb,
Orders o
WHERE tb.order_num = o.order_num
GROUP BY o.cust_id
ORDER BY total_ordered DESC
这个改进后的方案:
- 先在子查询中计算每个订单的总金额
- 然后通过订单号关联Orders表
- 最后按顾客ID分组,汇总所有订单金额
性能考量
在实际应用中,我们需要考虑两种方案的性能差异:
- 连接表方案通常更高效,因为它只需要一次表扫描和连接操作
- 子查询方案需要先处理子查询,再进行连接和分组,可能会有额外的临时表创建
但在现代数据库优化器中,这两种写法可能会被优化为相同的执行计划。不过,明确的分组操作可以避免逻辑错误。
常见误区
在解决这类问题时,开发者容易犯以下错误:
- 忽略一对多关系:忘记一个顾客可能有多个订单
- 分组不完整:只按订单分组而忘记按顾客分组
- 聚合函数使用不当:在错误的位置使用SUM等聚合函数
最佳实践建议
- 明确业务需求:首先要清楚是计算每个订单金额还是每个顾客的总金额
- 验证查询结果:检查结果是否包含所有需要的记录,没有重复或遗漏
- 考虑使用显式JOIN语法:使用INNER JOIN等明确表达连接意图,提高可读性
- 添加适当的索引:在order_num和cust_id上创建索引可以提高查询性能
通过这个案例,我们可以看到SQL查询中分组操作的重要性,特别是在处理一对多关系时。正确的分组策略是确保查询结果准确的关键。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0295- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp课程中英语学习模块的提示信息优化建议2 freeCodeCamp项目中移除未使用的CSS样式优化指南3 freeCodeCamp正则表达式教学视频中的语法修正4 freeCodeCamp课程中事件传单页面的CSS选择器问题解析5 freeCodeCamp项目中从ts-node迁移到tsx的技术决策分析6 freeCodeCamp正则表达式课程中反向引用示例代码修正分析7 freeCodeCamp课程中排版基础概念的优化探讨8 freeCodeCamp计算机基础课程中主板与CPU概念的精确表述 9 freeCodeCamp钢琴设计项目中的CSS盒模型设置优化10 freeCodeCamp猫照片应用HTML教程中的元素嵌套优化建议
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
854
505

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
254
295

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5