JavaGuide项目SQL面试题解析:顾客订单总金额计算
2025-04-26 07:31:55作者:姚月梅Lane
JavaGuide
JavaGuide:这是一份Java学习与面试指南,它涵盖了Java程序员所需要掌握的大部分核心知识。这份指南是一份通俗易懂、风趣幽默的学习资料,内容全面,深受Java学习者的欢迎。
在JavaGuide项目的SQL面试题总结中,有一个关于计算顾客订单总金额的题目引起了我的注意。这个题目看似简单,但其中隐藏着一些值得深入探讨的技术细节。
问题背景
题目要求我们编写SQL语句,返回每个顾客ID及其对应的所有订单总金额,并按金额从大到小排序。数据库中有两个表:
- OrderItems表:包含订单号(order_num)、商品价格(item_price)和商品数量(quantity)
- Orders表:包含订单号(order_num)和顾客ID(cust_id)
常见解决方案分析
连接表方案
最直观的解决方案是使用表连接:
SELECT b.cust_id, SUM(a.quantity * a.item_price) AS total_ordered
FROM OrderItems a, Orders b
WHERE a.order_num = b.order_num
GROUP BY cust_id
ORDER BY total_ordered DESC
这种方案直接通过订单号连接两个表,然后按顾客ID分组计算总和。逻辑清晰,执行效率也较高。
子查询方案
题目还要求使用子查询来实现。初始的子查询方案如下:
SELECT o.cust_id AS cust_id, tb.total_ordered AS total_ordered
FROM (SELECT order_num, Sum(item_price * quantity) AS total_ordered
FROM OrderItems
GROUP BY order_num) AS tb,
Orders o
WHERE tb.order_num = o.order_num
ORDER BY total_ordered DESC
这个方案存在一个关键问题:它只计算了每个订单的总金额,但没有对顾客ID进行分组汇总。这会导致如果一个顾客有多个订单,查询结果会返回多条记录而不是汇总后的总金额。
正确的子查询实现
正确的子查询实现应该在外部查询中对顾客ID进行分组:
SELECT o.cust_id, SUM(tb.total_ordered) AS total_ordered
FROM (SELECT order_num, SUM(item_price * quantity) AS total_ordered
FROM OrderItems
GROUP BY order_num) AS tb,
Orders o
WHERE tb.order_num = o.order_num
GROUP BY o.cust_id
ORDER BY total_ordered DESC
这个改进后的方案:
- 先在子查询中计算每个订单的总金额
- 然后通过订单号关联Orders表
- 最后按顾客ID分组,汇总所有订单金额
性能考量
在实际应用中,我们需要考虑两种方案的性能差异:
- 连接表方案通常更高效,因为它只需要一次表扫描和连接操作
- 子查询方案需要先处理子查询,再进行连接和分组,可能会有额外的临时表创建
但在现代数据库优化器中,这两种写法可能会被优化为相同的执行计划。不过,明确的分组操作可以避免逻辑错误。
常见误区
在解决这类问题时,开发者容易犯以下错误:
- 忽略一对多关系:忘记一个顾客可能有多个订单
- 分组不完整:只按订单分组而忘记按顾客分组
- 聚合函数使用不当:在错误的位置使用SUM等聚合函数
最佳实践建议
- 明确业务需求:首先要清楚是计算每个订单金额还是每个顾客的总金额
- 验证查询结果:检查结果是否包含所有需要的记录,没有重复或遗漏
- 考虑使用显式JOIN语法:使用INNER JOIN等明确表达连接意图,提高可读性
- 添加适当的索引:在order_num和cust_id上创建索引可以提高查询性能
通过这个案例,我们可以看到SQL查询中分组操作的重要性,特别是在处理一对多关系时。正确的分组策略是确保查询结果准确的关键。
JavaGuide
JavaGuide:这是一份Java学习与面试指南,它涵盖了Java程序员所需要掌握的大部分核心知识。这份指南是一份通俗易懂、风趣幽默的学习资料,内容全面,深受Java学习者的欢迎。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
646
149
Ascend Extension for PyTorch
Python
207
220
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
653
286
React Native鸿蒙化仓库
JavaScript
250
318
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
637
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
78
101
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
仓颉编程语言运行时与标准库。
Cangjie
134
873