DeepMD-kit中se_atten_v2描述符模型微调问题分析
问题背景
在使用DeepMD-kit进行分子动力学模拟时,研究人员发现当尝试对包含se_atten_v2描述符的预训练模型进行微调时,会遇到特定的技术障碍。这个问题主要出现在使用--init-frz-model参数初始化冻结模型进行微调的场景中。
问题现象
当研究人员尝试以下操作流程时会出现问题:
- 使用se_atten_v2描述符训练初始模型
- 通过
dp freeze命令冻结模型得到test.pb文件 - 使用
--init-frz-model test.pb参数启动新的训练任务
系统会抛出错误信息:"AssertionError: currently, only support weight matrix and bias matrix at the tabulation op!"。值得注意的是,当预训练模型不包含se_atten_v2描述符时,--init-frz-model参数可以正常工作。
技术分析
这个问题的根源在于DeepMD-kit 2.2.7版本中对于se_atten_v2描述符的特殊处理机制。se_atten_v2是一种基于自注意力机制的描述符,相比传统描述符具有更复杂的网络结构。
在模型冻结和初始化过程中,系统目前仅支持对权重矩阵(weight matrix)和偏置矩阵(bias matrix)这类标准神经网络参数的操作。而se_atten_v2描述符引入了额外的注意力机制相关参数,这些参数在现有的初始化流程中没有被正确处理。
临时解决方案
研究人员发现可以使用--init-model参数从检查点(checkpoint)继续训练作为替代方案。虽然这种方法可以完成训练过程,但存在以下局限性:
- 微调效果不理想,模型在新数据集上表现提升有限
- 无法充分利用冻结模型中的全部参数信息
- 训练过程需要从头开始构建计算图,而非直接继承预训练模型结构
技术展望
这个问题反映了深度学习力场开发中的一个常见挑战:如何在保持模型架构创新的同时,确保训练流程的兼容性和灵活性。对于类似se_atten_v2这样的新型描述符,需要:
- 扩展模型参数初始化机制,支持更多类型的网络参数
- 完善模型冻结和加载的兼容性测试
- 开发更灵活的微调策略,充分利用预训练模型的知识
结论
DeepMD-kit作为一款强大的分子模拟工具,在不断引入新功能的同时也面临着兼容性挑战。研究人员在使用新型描述符时需要注意相关限制,并关注项目的更新动态以获得更好的使用体验。对于se_atten_v2描述符的微调问题,建议等待官方修复或考虑使用替代的描述符方案。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00