【亲测免费】 CLIP4Clip 开源项目教程
2026-01-17 08:41:06作者:郦嵘贵Just
项目介绍
CLIP4Clip 是一个基于 CLIP 模型的端到端视频片段检索系统。该项目通过结合图像和文本的多模态学习,实现了高效的视频内容检索。CLIP4Clip 的核心优势在于其能够直接从视频中检索出与给定文本描述最匹配的片段,无需复杂的预处理和后处理步骤。
项目快速启动
环境配置
在开始之前,请确保您的环境中已安装以下依赖:
- Python 3.6 或更高版本
- PyTorch 1.7 或更高版本
- 其他依赖项可以通过以下命令安装:
pip install -r requirements.txt
数据准备
您需要准备相应的数据集,例如 DiDeMo 数据集。将数据集路径设置为 DATA_PATH:
export DATA_PATH=[Your DiDeMo data and videos path]
训练模型
使用以下命令启动训练过程:
python -m torch.distributed.launch --nproc_per_node=8 \
main_task_retrieval.py --do_train --num_thread_reader=2 \
--epochs=5 --batch_size=128 --n_display=50 \
--data_path $DATA_PATH \
--features_path $DATA_PATH/DiDeMo_Videos \
--output_dir ckpts/ckpt_didemo_retrieval_looseType \
--lr 1e-4 --max_words 64 --max_frames 64 --batch_size_val 16 \
--datatype didemo --feature_framerate 1 --coef_lr 1e-3 \
--freeze_layer_num 0 --slice_framepos 2 \
--loose_type --linear_patch 2d --sim_header meanP \
--pretrained_clip_name ViT-B/32
应用案例和最佳实践
视频内容检索
CLIP4Clip 可以广泛应用于视频内容检索场景,例如:
- 在线教育平台:根据课程描述检索相关教学视频片段。
- 视频编辑工具:帮助用户快速找到特定场景或动作的视频片段。
- 社交媒体分析:分析和检索与特定话题相关的视频内容。
最佳实践
- 数据预处理:确保视频和文本数据的质量,进行必要的清洗和标注。
- 模型调优:根据具体应用场景调整模型参数,如学习率、批大小等。
- 性能优化:利用分布式训练和模型剪枝等技术提升模型训练和推理速度。
典型生态项目
Searchium AI
Searchium AI 是一个基于 CLIP4Clip 的视频搜索加速平台,提供了大规模视频搜索的解决方案。它通过集成 CLIP4Clip 模型,实现了快速且准确的视频内容检索。
Hugging Face Spaces
Hugging Face Spaces 提供了一个用于部署和演示 CLIP4Clip 模型的平台。用户可以轻松地将训练好的模型部署到 Hugging Face Spaces,并通过 Web 界面进行交互式演示。
通过以上内容,您可以快速了解并开始使用 CLIP4Clip 开源项目。希望本教程对您有所帮助!
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355