SEAL_OGB: 基于图神经网络的开放图谱链接预测神器
项目介绍
SEAL_OGB 是一个开源实现,专为在开放图谱基准(Open Graph Benchmark, OGB)数据集上执行链接预测任务设计。该工具包源自论文《Labeling Trick: A Theory of Using Graph Neural Networks for Multi-Node Representation Learning》,提出了一种名为“双半径节点标签”(Double Radius Node Labeling, DRNL)的方法来增强节点特征,通过提取目标链接的k跳封闭子图,并利用PyTorch-Geometric库将这些带有标签的子图输入图神经网络中,高效预测链接的存在性。SEAL_OGB在提交时,在OGB leaderboard上的三个链接预测数据集中取得了第一名。
项目快速启动
要迅速体验SEAL_OGB的强大,你需要先确保安装了必要的环境和依赖。首先,确保拥有Python环境以及相关科学计算和深度学习库如PyTorch和PyTorch Geometric。接下来,通过以下步骤开始你的链接预测之旅:
步骤1: 克隆仓库
git clone https://github.com/facebookresearch/SEAL_OGB.git
cd SEAL_OGB
步骤2: 安装依赖
确保你的环境中已安装PyTorch,然后安装项目依赖:
pip install -r requirements.txt
步骤3: 运行示例
以ogbl-collab为例,开始训练链接预测模型:
python models/seal_link_pred.py --dataset ogbl-collab
这将会加载相应的数据集并执行链接预测任务,训练完成后,你可以观察到模型的性能指标。
应用案例和最佳实践
SEAL_OGB特别适用于那些需要精确预测图中未观测链接的应用场景,比如社交网络的关系推荐、化学分子中键的预测或学术引文网络的结构预测。最佳实践中,开发者应仔细选择k跳的大小,以平衡节点标签的信息丰富性和计算效率,同时利用DRNL策略有效编码节点局部结构信息,提升预测精度。
典型生态项目
虽然本项目主要围绕OGB数据集,但其原理和技术可以广泛应用于任何需要图链接预测的场景。开发者可以根据自己的需求,调整和扩展SEAL_OGB至其他领域,例如个性化推荐系统中的关系建模或是生物信息学中的蛋白质相互作用预测。社区鼓励贡献者将SEAL_OGB集成至更多生态项目中,促进图神经网络在实际问题解决中的应用。
这个教程提供了一个基础框架,引导用户快速入门SEAL_OGB,并探索其在链接预测领域的强大能力。深入研究源码和实验不同的配置,能够让你发掘更多的功能和优化技巧,从而在特定的图数据分析任务中取得优异的表现。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0129
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00