QAnything项目中的VLLM引擎GPU内存优化实践
2025-05-17 00:52:30作者:魏侃纯Zoe
在部署基于QAnything的知识问答系统时,使用VLLM推理引擎可能会遇到GPU内存不足的问题。本文将以Qwen-7B-QAnything模型在RTX3090显卡上的部署为例,深入分析问题原因并提供解决方案。
问题现象分析
当使用默认配置启动QAnything服务时,系统会抛出"ValueError: No available memory for the cache blocks"错误。从日志中可以清晰看到,VLLM引擎初始化时无法分配足够的GPU内存给缓存块,导致服务启动失败。
技术背景解析
VLLM引擎采用了一种创新的内存管理机制,它将GPU内存划分为两部分:
- 模型参数占用空间
- KV缓存空间(用于存储注意力机制的键值对)
在RTX3090这种24GB显存的显卡上,7B参数的Qwen模型本身大约需要14-16GB显存。剩余的显存需要分配给KV缓存,而默认的gpu_memory_utilization参数(0.85)可能无法满足需求。
解决方案实施
通过调整启动脚本中的gpu_memory_utilization参数,可以解决这个问题:
bash ./run.sh -c local -i 0 -b vllm -m Qwen-7B-QAnything -t qwen-7b-qanything -p 1 -r 0.95
关键修改点是将-r参数从0.85提高到0.95,这表示允许VLLM引擎使用95%的GPU显存。这种调整在RTX3090上被证明是有效的。
深入优化建议
- 监控工具使用:建议在调整参数前使用nvidia-smi工具监控显存使用情况
- 参数平衡:gpu_memory_utilization并非越大越好,需要为系统保留必要的显存
- 模型量化:对于更大参数的模型,可以考虑使用4bit量化来减少显存占用
- 批处理优化:适当减小max_batch_size也可以缓解显存压力
实践心得
在本地部署大模型时,显存管理是关键环节。理解VLLM引擎的内存分配机制,结合具体硬件配置进行参数调优,是确保服务稳定运行的重要技能。对于24GB显存的显卡,0.95的内存利用率是一个经过验证的可行值,但不同模型和硬件组合可能需要不同的优化策略。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0286Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp课程页面空白问题的技术分析与解决方案2 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析3 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析4 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 5 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析6 freeCodeCamp Cafe Menu项目中link元素的void特性解析7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp全栈开发课程中React实验项目的分类修正9 freeCodeCamp博客页面工作坊中的断言方法优化建议10 freeCodeCamp课程中屏幕放大器知识点优化分析
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
162
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
96
15

React Native鸿蒙化仓库
C++
199
279

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16

Git4Research旨在构建一个开放、包容、协作的研究社区,让更多人能够参与到科学研究中,共同推动知识的进步。
HTML
23
1

基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
950
557

基于QEMU构建的RISC-V64 SOC,支持Linux,baremetal, RTOS等,适合用来学习Linux,后续还会添加大量的controller,实现无需实体开发板,即可学习Linux和RISC-V架构
C
19
5