首页
/ QAnything项目中的VLLM引擎GPU内存优化实践

QAnything项目中的VLLM引擎GPU内存优化实践

2025-05-17 00:52:30作者:魏侃纯Zoe

在部署基于QAnything的知识问答系统时,使用VLLM推理引擎可能会遇到GPU内存不足的问题。本文将以Qwen-7B-QAnything模型在RTX3090显卡上的部署为例,深入分析问题原因并提供解决方案。

问题现象分析

当使用默认配置启动QAnything服务时,系统会抛出"ValueError: No available memory for the cache blocks"错误。从日志中可以清晰看到,VLLM引擎初始化时无法分配足够的GPU内存给缓存块,导致服务启动失败。

技术背景解析

VLLM引擎采用了一种创新的内存管理机制,它将GPU内存划分为两部分:

  1. 模型参数占用空间
  2. KV缓存空间(用于存储注意力机制的键值对)

在RTX3090这种24GB显存的显卡上,7B参数的Qwen模型本身大约需要14-16GB显存。剩余的显存需要分配给KV缓存,而默认的gpu_memory_utilization参数(0.85)可能无法满足需求。

解决方案实施

通过调整启动脚本中的gpu_memory_utilization参数,可以解决这个问题:

bash ./run.sh -c local -i 0 -b vllm -m Qwen-7B-QAnything -t qwen-7b-qanything -p 1 -r 0.95

关键修改点是将-r参数从0.85提高到0.95,这表示允许VLLM引擎使用95%的GPU显存。这种调整在RTX3090上被证明是有效的。

深入优化建议

  1. 监控工具使用:建议在调整参数前使用nvidia-smi工具监控显存使用情况
  2. 参数平衡:gpu_memory_utilization并非越大越好,需要为系统保留必要的显存
  3. 模型量化:对于更大参数的模型,可以考虑使用4bit量化来减少显存占用
  4. 批处理优化:适当减小max_batch_size也可以缓解显存压力

实践心得

在本地部署大模型时,显存管理是关键环节。理解VLLM引擎的内存分配机制,结合具体硬件配置进行参数调优,是确保服务稳定运行的重要技能。对于24GB显存的显卡,0.95的内存利用率是一个经过验证的可行值,但不同模型和硬件组合可能需要不同的优化策略。

登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
162
2.05 K
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ShopXO开源商城ShopXO开源商城
🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
96
15
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
199
279
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16
Git4ResearchGit4Research
Git4Research旨在构建一个开放、包容、协作的研究社区,让更多人能够参与到科学研究中,共同推动知识的进步。
HTML
23
1
apintoapinto
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
950
557
risc-v64-naruto-pirisc-v64-naruto-pi
基于QEMU构建的RISC-V64 SOC,支持Linux,baremetal, RTOS等,适合用来学习Linux,后续还会添加大量的controller,实现无需实体开发板,即可学习Linux和RISC-V架构
C
19
5