Test Reporter 使用教程
1. 项目介绍
Test Reporter 是一个 GitHub Action,用于直接在 GitHub 中显示来自流行测试框架的测试结果。它能够解析 XML 或 JSON 格式的测试结果,并创建漂亮的报告。Test Reporter 支持多种编程语言和测试框架,包括 .NET (xUnit, NUnit, MSTest)、Dart、Flutter、Java (JUnit)、JavaScript (JEST, Mocha) 等。
2. 项目快速启动
2.1 安装
首先,在你的 GitHub 仓库中创建一个 .github/workflows 目录,并在其中创建一个 .yml 文件(例如 test-reporter.yml)。
2.2 配置 GitHub Action
在 .yml 文件中添加以下内容:
name: Test Reporter
on:
pull_request:
push:
jobs:
build-test:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- run: npm ci
- run: npm test
- name: Test Report
uses: dorny/test-reporter@v1
if: success() || failure()
with:
name: JEST Tests
path: reports/jest-*.xml
reporter: jest-junit
2.3 运行测试
提交并推送你的更改,GitHub Actions 将自动运行测试并生成测试报告。
3. 应用案例和最佳实践
3.1 公共仓库的最佳实践
对于公共仓库,建议使用两个独立的 GitHub Actions 工作流:
- CI 工作流:在 PR 头分支的上下文中运行,执行测试并将测试结果上传为构建工件。
- Test Report 工作流:在仓库主分支的上下文中运行,下载测试结果并创建报告。
示例配置如下:
# CI 工作流
name: 'CI'
on:
pull_request:
jobs:
build-test:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- run: npm ci
- run: npm test
- uses: actions/upload-artifact@v4
if: success() || failure()
with:
name: test-results
path: jest-junit.xml
# Test Report 工作流
name: 'Test Report'
on:
workflow_run:
workflows: ['CI']
types: [completed]
permissions:
contents: read
actions: read
checks: write
jobs:
report:
runs-on: ubuntu-latest
steps:
- uses: dorny/test-reporter@v1
with:
artifact: test-results
name: JEST Tests
path: '*.xml'
reporter: jest-junit
3.2 私有仓库的最佳实践
对于私有仓库,可以直接使用单个工作流来运行测试并生成报告。
4. 典型生态项目
4.1 GitHub Actions
Test Reporter 是 GitHub Actions 生态系统的一部分,可以与其他 GitHub Actions 无缝集成,例如 actions/checkout 和 actions/upload-artifact。
4.2 JEST
JEST 是一个流行的 JavaScript 测试框架,Test Reporter 支持 JEST 生成的 JUnit XML 格式的测试结果。
4.3 NUnit
NUnit 是一个 .NET 测试框架,Test Reporter 支持 NUnit 生成的 XML 格式的测试结果。
4.4 JUnit
JUnit 是一个 Java 测试框架,Test Reporter 支持 JUnit 生成的 XML 格式的测试结果。
通过以上步骤,你可以轻松地在 GitHub 中集成 Test Reporter,并生成漂亮的测试报告。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00