Test Reporter 使用教程
1. 项目介绍
Test Reporter 是一个 GitHub Action,用于直接在 GitHub 中显示来自流行测试框架的测试结果。它能够解析 XML 或 JSON 格式的测试结果,并创建漂亮的报告。Test Reporter 支持多种编程语言和测试框架,包括 .NET (xUnit, NUnit, MSTest)、Dart、Flutter、Java (JUnit)、JavaScript (JEST, Mocha) 等。
2. 项目快速启动
2.1 安装
首先,在你的 GitHub 仓库中创建一个 .github/workflows 目录,并在其中创建一个 .yml 文件(例如 test-reporter.yml)。
2.2 配置 GitHub Action
在 .yml 文件中添加以下内容:
name: Test Reporter
on:
pull_request:
push:
jobs:
build-test:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- run: npm ci
- run: npm test
- name: Test Report
uses: dorny/test-reporter@v1
if: success() || failure()
with:
name: JEST Tests
path: reports/jest-*.xml
reporter: jest-junit
2.3 运行测试
提交并推送你的更改,GitHub Actions 将自动运行测试并生成测试报告。
3. 应用案例和最佳实践
3.1 公共仓库的最佳实践
对于公共仓库,建议使用两个独立的 GitHub Actions 工作流:
- CI 工作流:在 PR 头分支的上下文中运行,执行测试并将测试结果上传为构建工件。
- Test Report 工作流:在仓库主分支的上下文中运行,下载测试结果并创建报告。
示例配置如下:
# CI 工作流
name: 'CI'
on:
pull_request:
jobs:
build-test:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- run: npm ci
- run: npm test
- uses: actions/upload-artifact@v4
if: success() || failure()
with:
name: test-results
path: jest-junit.xml
# Test Report 工作流
name: 'Test Report'
on:
workflow_run:
workflows: ['CI']
types: [completed]
permissions:
contents: read
actions: read
checks: write
jobs:
report:
runs-on: ubuntu-latest
steps:
- uses: dorny/test-reporter@v1
with:
artifact: test-results
name: JEST Tests
path: '*.xml'
reporter: jest-junit
3.2 私有仓库的最佳实践
对于私有仓库,可以直接使用单个工作流来运行测试并生成报告。
4. 典型生态项目
4.1 GitHub Actions
Test Reporter 是 GitHub Actions 生态系统的一部分,可以与其他 GitHub Actions 无缝集成,例如 actions/checkout 和 actions/upload-artifact。
4.2 JEST
JEST 是一个流行的 JavaScript 测试框架,Test Reporter 支持 JEST 生成的 JUnit XML 格式的测试结果。
4.3 NUnit
NUnit 是一个 .NET 测试框架,Test Reporter 支持 NUnit 生成的 XML 格式的测试结果。
4.4 JUnit
JUnit 是一个 Java 测试框架,Test Reporter 支持 JUnit 生成的 XML 格式的测试结果。
通过以上步骤,你可以轻松地在 GitHub 中集成 Test Reporter,并生成漂亮的测试报告。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00