Test Reporter 使用教程
1. 项目介绍
Test Reporter 是一个 GitHub Action,用于直接在 GitHub 中显示来自流行测试框架的测试结果。它能够解析 XML 或 JSON 格式的测试结果,并创建漂亮的报告。Test Reporter 支持多种编程语言和测试框架,包括 .NET (xUnit, NUnit, MSTest)、Dart、Flutter、Java (JUnit)、JavaScript (JEST, Mocha) 等。
2. 项目快速启动
2.1 安装
首先,在你的 GitHub 仓库中创建一个 .github/workflows
目录,并在其中创建一个 .yml
文件(例如 test-reporter.yml
)。
2.2 配置 GitHub Action
在 .yml
文件中添加以下内容:
name: Test Reporter
on:
pull_request:
push:
jobs:
build-test:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- run: npm ci
- run: npm test
- name: Test Report
uses: dorny/test-reporter@v1
if: success() || failure()
with:
name: JEST Tests
path: reports/jest-*.xml
reporter: jest-junit
2.3 运行测试
提交并推送你的更改,GitHub Actions 将自动运行测试并生成测试报告。
3. 应用案例和最佳实践
3.1 公共仓库的最佳实践
对于公共仓库,建议使用两个独立的 GitHub Actions 工作流:
- CI 工作流:在 PR 头分支的上下文中运行,执行测试并将测试结果上传为构建工件。
- Test Report 工作流:在仓库主分支的上下文中运行,下载测试结果并创建报告。
示例配置如下:
# CI 工作流
name: 'CI'
on:
pull_request:
jobs:
build-test:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- run: npm ci
- run: npm test
- uses: actions/upload-artifact@v4
if: success() || failure()
with:
name: test-results
path: jest-junit.xml
# Test Report 工作流
name: 'Test Report'
on:
workflow_run:
workflows: ['CI']
types: [completed]
permissions:
contents: read
actions: read
checks: write
jobs:
report:
runs-on: ubuntu-latest
steps:
- uses: dorny/test-reporter@v1
with:
artifact: test-results
name: JEST Tests
path: '*.xml'
reporter: jest-junit
3.2 私有仓库的最佳实践
对于私有仓库,可以直接使用单个工作流来运行测试并生成报告。
4. 典型生态项目
4.1 GitHub Actions
Test Reporter 是 GitHub Actions 生态系统的一部分,可以与其他 GitHub Actions 无缝集成,例如 actions/checkout
和 actions/upload-artifact
。
4.2 JEST
JEST 是一个流行的 JavaScript 测试框架,Test Reporter 支持 JEST 生成的 JUnit XML 格式的测试结果。
4.3 NUnit
NUnit 是一个 .NET 测试框架,Test Reporter 支持 NUnit 生成的 XML 格式的测试结果。
4.4 JUnit
JUnit 是一个 Java 测试框架,Test Reporter 支持 JUnit 生成的 XML 格式的测试结果。
通过以上步骤,你可以轻松地在 GitHub 中集成 Test Reporter,并生成漂亮的测试报告。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0128AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









