ByConity查询性能问题排查与优化实践
问题背景
在使用ByConity替代原有ClickHouse集群的过程中,遇到了显著的查询性能差异问题。具体表现为:在ClickHouse集群中150亿数据的查询响应时间为200ms,而在ByConity集群中13亿数据的简单查询(如select a from x where b=x)响应时间却长达2-28秒不等,其中limit 100的简单查询也需要11秒。
环境配置
ByConity集群部署在10台物理机上,采用Kubernetes架构,底层存储先后尝试了OpenEBS Local PV+HDFS和MinIO方案。集群状态显示正常运行,无Pod重启情况。
初步排查
通过分析query_log和profile_events日志,发现以下几个关键现象:
- 冷查询性能较差,HDFS读取时间较长
- 即使是不涉及磁盘操作的简单查询(如
select a from x limit 100)也需要11秒 - 列是否为projection对性能影响不大
深入分析
1. 元数据操作瓶颈
通过执行特定诊断SQL,发现表存在大量小parts(约25万个),每个part仅包含约1万条数据。这是由于使用Kettle JDBC驱动批量导入时,每次仅导入1万条数据导致的。
select count() from cnch(server, system.cnch_parts)
where database = 'xxx' and table = 'yyy'
2. 后台合并任务异常
进一步检查发现Daemon Manager(DM)服务未正常工作,导致后台merge任务无法执行。DM日志显示HDFS地址配置缺失的错误:
Failed to get HDFS connection: HDFS address is empty
3. 分区与TTL配置问题
表的分区策略(partition by toYYYYMM(begin_time))与TTL表达式(toStartOfMonth(ip_begin_time) + toIntervalMonth(12))不匹配,这会影响数据生命周期管理的有效性。
解决方案
1. 修复Daemon Manager配置
在byconity-dm-config的ConfigMap中,为daemon-manager.yaml添加HDFS地址配置:
hdfs_addr: hdfs://byconity-hdfs-namenodes:8020
重启DM Pod后,后台merge任务开始正常执行,逐步合并小parts。
2. 调整数据导入策略
建议调整批量导入的数据量,减少小parts的产生。对于JDBC导入,可以增大batch size至10万或更高。
3. 统一分区与TTL配置
将分区表达式调整为与TTL一致:
ALTER TABLE xxx.yyy
MODIFY PARTITION BY toStartOfMonth(ip_begin_time)
TTL toStartOfMonth(ip_begin_time) + toIntervalMonth(12)
优化效果
实施上述措施后:
- 后台merge任务成功合并小parts
- 简单查询性能提升至毫秒级
- 系统整体稳定性显著改善
经验总结
- 小parts问题:大量小parts会严重影响查询性能,特别是在分布式系统中,元数据操作会成为瓶颈。
- 后台服务监控:Daemon Manager等后台服务状态需要定期检查,确保合并、TTL等任务正常执行。
- 配置一致性:存储地址等关键配置必须完整正确,否则会导致后台服务异常。
- 设计规范:表的分区策略与TTL设置需要保持一致,遵循最佳实践。
通过这次问题排查,我们不仅解决了当前性能问题,也为后续ByConity集群的运维积累了宝贵经验。建议用户在迁移至ByConity时,特别注意数据导入策略和后台服务的配置检查。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00