QuTiP 4.7.4与最新版SciPy 1.12.0的兼容性问题分析
问题背景
QuTiP(Quantum Toolbox in Python)是一个用于量子力学模拟的开源Python库,广泛应用于量子光学和量子信息领域的研究。近期,用户在使用QuTiP 4.7.4版本时遇到了与SciPy 1.12.0版本的兼容性问题,导致无法正常导入QuTiP库。
问题根源
问题的核心在于QuTiP 4.7.4版本中的parallel.py文件使用了已被弃用的SciPy导入方式。具体来说,该文件中包含以下导入语句:
from scipy import array
这种导入方式在SciPy 1.11版本中已被标记为弃用,并在1.12.0版本中完全移除。SciPy官方建议用户改用NumPy中的array函数,即:
from numpy import array
技术细节
-
历史背景:早期版本的SciPy确实提供了
array函数,但随着NumPy成为Python科学计算的核心库,SciPy团队决定逐步移除与NumPy重复的功能。 -
弃用过程:在SciPy 1.11版本中,使用
scipy.array会触发弃用警告,提示用户将在SciPy 2.0.0中完全移除该功能。然而,实际移除时间比预期的更早,在1.12.0版本就执行了。 -
影响范围:这一问题影响了所有使用QuTiP 4.7.4及更早版本,并升级到SciPy 1.12.0的用户。
解决方案
QuTiP开发团队已经意识到这个问题,并在后续提交中修复了此问题:
-
代码修复:在QuTiP的代码库中,已经将
from scipy import array替换为from numpy import array。 -
版本更新:修复后的代码将包含在QuTiP 4.7.5及更高版本中。
-
临时解决方案:对于急需使用QuTiP的用户,可以采取以下临时措施:
- 降级SciPy到1.11.x版本
- 手动修改本地安装的QuTiP代码
最佳实践建议
-
版本管理:在科学计算项目中,建议使用虚拟环境并固定关键依赖包的版本,以避免类似的兼容性问题。
-
弃用警告:开发者应重视库的弃用警告,及时更新代码以避免未来可能出现的兼容性问题。
-
依赖关系:库开发者应明确声明依赖包的版本范围,特别是对于可能引入重大变更的依赖项。
总结
这一事件凸显了科学计算生态系统中库之间依赖关系管理的重要性。QuTiP团队已经积极应对这一问题,用户可以通过升级到即将发布的4.7.5版本来解决兼容性问题。同时,这也提醒开发者需要密切关注依赖库的更新日志和弃用警告,以保持项目的长期稳定性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00