distributions3项目中的单样本T检验教程
2025-06-19 01:53:13作者:柏廷章Berta
引言
在统计学中,T检验是一种常用的假设检验方法,用于判断样本均值与某个已知值之间是否存在显著差异。本文将基于distributions3项目,详细介绍如何使用R语言进行单样本T检验的分析过程。
数据准备
假设我们有一组数据,记录了某位教授在课堂上使用新梗的次数:
3, 7, 11, 0, 7, 0, 4, 5, 6, 2
这组数据包含10个观测值,我们需要检验教授平均知道的梗数量是否等于3。
正态性检验
在进行T检验前,我们需要确认数据是否符合正态分布。对于小样本(n<30),这一点尤为重要。
Q-Q图检验
x <- c(3, 7, 11, 0, 7, 0, 4, 5, 6, 2)
qqnorm(x)
qqline(x)
通过观察Q-Q图,如果数据点大致沿着参考线分布,则可以认为数据近似正态分布。本例中的数据基本符合这一特征。
假设检验
我们设定以下假设:
- 零假设(H₀):μ = 3(教授平均知道3个梗)
- 备择假设(H₁):μ ≠ 3
T统计量计算
T统计量的计算公式为:
T = (x̄ - μ₀) / (s/√n)
其中:
- x̄是样本均值
- μ₀是假设的总体均值(本例中为3)
- s是样本标准差
- n是样本大小
在R中实现:
n <- length(x)
t_stat <- (mean(x) - 3) / (sd(x) / sqrt(n))
p值计算
使用distributions3包可以方便地计算T分布的累积概率:
library(distributions3)
T_9 <- StudentsT(df = 9) # 自由度为n-1=9
对于双侧检验,p值为:
2 * cdf(T_9, -abs(t_stat))
对于单侧检验:
- 若备择假设为μ > 3,p值为
1 - cdf(T_9, t_stat) - 若备择假设为μ < 3,p值为
cdf(T_9, t_stat)
使用内置t.test函数
R内置的t.test函数可以简化上述过程:
# 双侧检验
t.test(x, mu = 3)
# 单侧检验(μ > 3)
t.test(x, mu = 3, alternative = "greater")
# 单侧检验(μ < 3)
t.test(x, mu = 3, alternative = "less")
结果解读
通过计算得到的p值可以与显著性水平(通常为0.05)比较:
- 如果p值小于0.05,拒绝零假设
- 如果p值大于0.05,不能拒绝零假设
在本例中,p值约为0.20,大于0.05,因此我们没有足够证据拒绝"教授平均知道3个梗"的假设。
总结
单样本T检验是分析样本均值与假设值差异的重要工具。distributions3包提供了直观的接口来计算T分布相关概率,使得假设检验过程更加便捷。在实际应用中,除了计算p值外,还应该考虑效应大小和置信区间,以获得更全面的分析结果。
对于小样本数据,正态性检验是不可或缺的步骤。当数据明显偏离正态分布时,可能需要考虑非参数检验方法,如Wilcoxon符号秩检验。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
WebVideoDownloader:高效网页视频抓取工具全面使用指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
291
2.62 K
Ascend Extension for PyTorch
Python
123
149
暂无简介
Dart
583
127
React Native鸿蒙化仓库
JavaScript
227
306
仓颉编译器源码及 cjdb 调试工具。
C++
121
395
仓颉编程语言运行时与标准库。
Cangjie
130
408
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
185
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
205