distributions3项目中的单样本T检验教程
2025-06-19 18:05:48作者:柏廷章Berta
引言
在统计学中,T检验是一种常用的假设检验方法,用于判断样本均值与某个已知值之间是否存在显著差异。本文将基于distributions3项目,详细介绍如何使用R语言进行单样本T检验的分析过程。
数据准备
假设我们有一组数据,记录了某位教授在课堂上使用新梗的次数:
3, 7, 11, 0, 7, 0, 4, 5, 6, 2
这组数据包含10个观测值,我们需要检验教授平均知道的梗数量是否等于3。
正态性检验
在进行T检验前,我们需要确认数据是否符合正态分布。对于小样本(n<30),这一点尤为重要。
Q-Q图检验
x <- c(3, 7, 11, 0, 7, 0, 4, 5, 6, 2)
qqnorm(x)
qqline(x)
通过观察Q-Q图,如果数据点大致沿着参考线分布,则可以认为数据近似正态分布。本例中的数据基本符合这一特征。
假设检验
我们设定以下假设:
- 零假设(H₀):μ = 3(教授平均知道3个梗)
- 备择假设(H₁):μ ≠ 3
T统计量计算
T统计量的计算公式为:
T = (x̄ - μ₀) / (s/√n)
其中:
- x̄是样本均值
- μ₀是假设的总体均值(本例中为3)
- s是样本标准差
- n是样本大小
在R中实现:
n <- length(x)
t_stat <- (mean(x) - 3) / (sd(x) / sqrt(n))
p值计算
使用distributions3包可以方便地计算T分布的累积概率:
library(distributions3)
T_9 <- StudentsT(df = 9) # 自由度为n-1=9
对于双侧检验,p值为:
2 * cdf(T_9, -abs(t_stat))
对于单侧检验:
- 若备择假设为μ > 3,p值为
1 - cdf(T_9, t_stat) - 若备择假设为μ < 3,p值为
cdf(T_9, t_stat)
使用内置t.test函数
R内置的t.test函数可以简化上述过程:
# 双侧检验
t.test(x, mu = 3)
# 单侧检验(μ > 3)
t.test(x, mu = 3, alternative = "greater")
# 单侧检验(μ < 3)
t.test(x, mu = 3, alternative = "less")
结果解读
通过计算得到的p值可以与显著性水平(通常为0.05)比较:
- 如果p值小于0.05,拒绝零假设
- 如果p值大于0.05,不能拒绝零假设
在本例中,p值约为0.20,大于0.05,因此我们没有足够证据拒绝"教授平均知道3个梗"的假设。
总结
单样本T检验是分析样本均值与假设值差异的重要工具。distributions3包提供了直观的接口来计算T分布相关概率,使得假设检验过程更加便捷。在实际应用中,除了计算p值外,还应该考虑效应大小和置信区间,以获得更全面的分析结果。
对于小样本数据,正态性检验是不可或缺的步骤。当数据明显偏离正态分布时,可能需要考虑非参数检验方法,如Wilcoxon符号秩检验。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
881