D2L-KO项目中的微积分基础教程
引言:从多边形面积到微积分
微积分的发展可以追溯到2500年前的古希腊时期,当时数学家们通过将多边形分割成三角形并求和来计算多边形面积。对于圆形等曲线形状的面积计算,古希腊人采用了内接多边形逼近的方法,这种方法被称为"穷竭法"。
这种方法实际上就是积分学的雏形。2000多年后,微积分的另一个分支——微分学被发明出来。在深度学习中,微分学在优化问题中扮演着关键角色。
深度学习中的微积分
在深度学习中,我们通过不断更新模型参数来最小化损失函数。这个过程涉及两个核心问题:
- 优化:调整模型参数以更好地拟合观测数据
- 泛化:确保模型在未见数据上也能表现良好
理解微分学对于掌握深度学习优化算法至关重要,因为大多数优化算法都依赖于计算导数。
导数基础
导数的定义
对于函数f: ℝ → ℝ,其在点x处的导数定义为:
f'(x) = lim_{h→0} [f(x+h) - f(x)]/h
如果这个极限存在,我们说f在x处可导。导数表示函数在某一点的瞬时变化率。
导数计算示例
考虑函数u = f(x) = 3x² - 4x,我们可以通过数值方法近似计算其在x=1处的导数:
def numerical_lim(f, x, h):
return (f(x + h) - f(x)) / h
h = 0.1
for i in range(5):
print(f'h={h:.5f}, numerical limit={numerical_lim(f, 1, h):.5f}')
h *= 0.1
随着h趋近于0,计算结果趋近于2,这与解析解一致。
导数规则
常用的导数计算规则包括:
- 常数规则:DC = 0
- 幂规则:Dxⁿ = nxⁿ⁻¹
- 指数规则:Deˣ = eˣ
- 对数规则:Dln(x) = 1/x
以及组合函数的求导规则:
- 常数倍规则
- 加法规则
- 乘法规则
- 除法规则
应用这些规则,我们可以解析地求出f(x) = 3x² - 4x的导数为f'(x) = 6x - 4。
导数可视化
我们可以使用Python的matplotlib库绘制函数及其切线:
x = np.arange(0, 3, 0.1)
plot(x, [f(x), 2 * x - 3], 'x', 'f(x)', legend=['f(x)', 'Tangent line (x=1)'])
这个可视化展示了函数在x=1处的切线,其斜率正好等于该点的导数值2。
多元函数的偏导数
在深度学习中,我们经常需要处理多元函数。对于y = f(x₁, x₂, ..., xₙ),我们定义关于第i个变量的偏导数为:
∂y/∂xᵢ = lim_{h→0} [f(x₁,...,xᵢ+h,...,xₙ) - f(x₁,...,xᵢ,...,xₙ)]/h
计算偏导数时,只需将其他变量视为常数。
梯度
梯度是多元函数对所有变量的偏导数组成的向量:
∇ₓf(x) = [∂f/∂x₁, ∂f/∂x₂, ..., ∂f/∂xₙ]ᵀ
梯度在深度学习的优化算法中至关重要,因为它指向函数值增长最快的方向。
链式法则
链式法则允许我们对复合函数进行微分。对于单变量函数y=f(u)和u=g(x),链式法则为:
dy/dx = dy/du * du/dx
对于多元函数,链式法则更为复杂。假设y依赖于u₁,u₂,...,uₘ,而每个uᵢ又依赖于x₁,x₂,...,xₙ,那么:
∂y/∂xᵢ = Σ (∂y/∂uⱼ)(∂uⱼ/∂xᵢ)
这个规则在反向传播算法中起着核心作用。
总结
- 微分学是深度学习优化问题的基础
- 导数表示函数在某点的瞬时变化率,也是切线的斜率
- 梯度是多元函数偏导数组成的向量
- 链式法则使我们能够对复合函数进行微分
练习
- 绘制函数y = x³ - 1/x及其在x=1处的切线
- 计算函数f(x) = 3x₁² + 5eˣ²的梯度
- 求函数f(x) = ||x||₂的梯度
- 写出u = f(x,y,z)且x=x(a,b), y=y(a,b), z=z(a,b)情况下的链式法则
通过掌握这些微积分基础知识,我们为理解深度学习中的优化算法奠定了坚实的数学基础。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00