Opacus项目中高斯差分隐私的泊松子采样实现解析
2025-07-08 07:43:38作者:虞亚竹Luna
高斯差分隐私中的子采样机制
在差分隐私的实现中,子采样(subsampling)是一种常见的隐私放大技术。Opacus作为PyTorch的差分隐私库,实现了基于高斯差分隐私(Gaussian Differential Privacy, GDP)的隐私计算。其中涉及两种不同的子采样方式:均匀子采样(uniform subsampling)和泊松子采样(Poisson subsampling)。
均匀子采样与泊松子采样的区别
均匀子采样采用固定大小的批次进行训练,这是原始高斯差分隐私论文中采用的方法。而泊松子采样则使用随机变量批次大小,这是DP-SGD(差分隐私随机梯度下降)中常用的方法。这两种方法在隐私计算上有着不同的数学表达。
Opacus中的μ值计算实现
Opacus库中实现了两种不同的μ值计算方法:
- 泊松子采样μ计算:
def compute_mu_poisson(*, steps: int, noise_multiplier: float, sample_rate: float) -> float:
return np.sqrt(np.exp(noise_multiplier**(-2)) - 1) * np.sqrt(steps) * sample_rate
- 均匀子采样μ计算:
return (np.sqrt(2) * c * np.sqrt(
np.exp(noise_multiplier**(-2)) * norm.cdf(1.5/noise_multiplier)
+ 3 * norm.cdf(-0.5/noise_multiplier) - 2))
数学原理分析
泊松子采样的μ计算公式来源于后续研究论文,而非原始高斯差分隐私论文。该公式基于以下数学原理:
- 噪声乘子(noise_multiplier)的倒数平方反映了隐私保护的强度
- 指数函数与平方根的组合形式体现了高斯机制的特性
- 训练步数(steps)和采样率(sample_rate)的乘积反映了隐私累积效应
实际应用建议
在实际应用中,开发者需要注意:
- 明确自己需要哪种子采样方式:固定批次大小还是随机批次大小
- 根据选择的子采样方式调用对应的μ计算函数
- 理解不同计算方式对最终隐私预算的影响
- 在实验报告中明确说明采用的子采样方式和计算方法
总结
Opacus库通过实现两种不同的μ计算方法,为开发者提供了灵活的高斯差分隐私计算选择。理解这些实现背后的数学原理和适用场景,对于正确使用差分隐私保护技术至关重要。开发者应当根据具体应用场景和隐私需求,选择合适的子采样方式和相应的计算方法。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
137