RocksDB-Cloud 开源项目教程
项目介绍
RocksDB-Cloud 是一个 C++ 库,旨在将 RocksDB 的强大功能引入 AWS、Google Cloud 和 Microsoft Azure。它利用 RocksDB 提供对存储在 Flash 和 RAM 系统中的数据的快速键值访问。通过与 AWS-S3 和 Google Cloud Services 等云服务的集成,RocksDB-Cloud 提供了数据持久性,即使在机器故障的情况下也能保证数据安全。此外,它允许以成本效益的方式利用大多数云提供商提供的丰富的存储服务层次(基于 RAM、NvMe SSD、磁盘、冷存储等)。
项目快速启动
环境准备
在开始之前,请确保您已经安装了以下工具和库:
- Git
- C++ 编译器
- CMake
克隆项目
git clone https://github.com/rockset/rocksdb-cloud.git
cd rocksdb-cloud
构建项目
mkdir build
cd build
cmake ..
make
配置和运行
在 AWS 环境中,您需要配置 S3 存储桶和相应的访问密钥。以下是一个简单的配置示例:
export AWS_ACCESS_KEY_ID=your_access_key_id
export AWS_SECRET_ACCESS_KEY=your_secret_access_key
export S3_BUCKET_NAME=your_bucket_name
运行 RocksDB 实例:
./rocksdb_cloud --s3_bucket=$S3_BUCKET_NAME
应用案例和最佳实践
数据持久性和故障恢复
RocksDB-Cloud 通过将数据和元数据持续自动复制到 S3,确保了数据的持久性。即使 RocksDB 机器发生故障,任何其他 EC2 机器上的进程都可以通过配置 S3 存储桶重新打开相同的 RocksDB 数据库。
零拷贝克隆
RocksDB-Cloud 支持 zero-copy-clone() 功能,允许另一台机器上的从属 RocksDB 实例克隆现有数据库。主从 RocksDB 实例可以并行运行,并共享一组公共的数据库文件。
典型生态项目
RocksDB
RocksDB 是由 Facebook 数据库工程团队开发和维护的,基于 LevelDB 的工作,由 Sanjay Ghemawat 和 Jeff Dean 开发。它是一个适用于存储在闪存驱动器上的快速键值服务器的核心构建块。RocksDB 采用日志结构化合并数据库(LSM)设计,具有灵活的写放大因子(WAF)、读放大因子(RAF)和空间放大因子(SAF)之间的权衡。它支持多线程压缩。
Rockset
Rockset 是一个云原生数据库,利用 RocksDB-Cloud 构建。它提供了实时查询和分析功能,适用于需要快速数据访问和处理的场景。
通过以上步骤和示例,您可以快速开始使用 RocksDB-Cloud 项目,并了解其在实际应用中的优势和最佳实践。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00