pgvecto.rs 从0.1.1升级到0.2.0版本的技术指南
升级背景与挑战
pgvecto.rs作为PostgreSQL的向量数据库插件,在0.2.0版本中引入了多项改进。然而,从0.1.x版本升级到0.2.0版本时,用户可能会遇到一些技术挑战,特别是在非Docker环境下的裸机或虚拟机部署场景中。
升级过程中的关键问题
在升级过程中,用户主要遇到了以下几个技术难点:
-
版本识别问题:从源代码构建时,Cargo.toml文件中默认的版本号为0.0.0,需要手动修改为0.2.0才能正确安装。
-
依赖版本冲突:pgrx依赖版本需要与系统安装的版本匹配,否则会导致构建失败。
-
升级路径缺失:直接使用ALTER EXTENSION命令升级时,系统报告没有从0.1.1到0.2.0的升级路径。
-
扩展删除困难:尝试删除旧版本扩展时,由于依赖关系导致操作失败。
解决方案与最佳实践
1. 准备工作
在开始升级前,建议先备份数据库,特别是包含向量数据的表。对于Immich用户,这包括asset_faces和smart_search表中的数据。
2. 正确安装新版本
从源代码构建时,需要特别注意以下两点:
- 修改Cargo.toml中的版本号为0.2.0
- 确保pgrx依赖版本与系统安装版本一致
构建命令示例:
cargo pgrx install -c /usr/lib/postgresql14/bin/pg_config --sudo --release
3. 升级策略选择
根据实际测试,推荐采用以下两种升级策略之一:
策略一:完整升级路径
- 确保升级脚本vectors--0.1.11--0.2.0.sql已放置在PostgreSQL的extension目录中
- 执行以下SQL命令序列:
UPDATE pg_catalog.pg_extension SET extversion = '0.1.11' WHERE extname = 'vectors';
UPDATE pg_catalog.pg_extension SET extrelocatable = true WHERE extname = 'vectors';
CREATE SCHEMA IF NOT EXISTS vectors;
ALTER EXTENSION vectors SET SCHEMA vectors;
UPDATE pg_catalog.pg_extension SET extrelocatable = false WHERE extname = 'vectors';
ALTER EXTENSION vectors UPDATE TO '0.2.0';
SELECT pgvectors_upgrade();
策略二:全新安装(适用于可接受数据丢失的场景)
- 删除旧版扩展:
DROP EXTENSION vectors CASCADE;
- 停止PostgreSQL服务
- 安装新版vectors.so库文件
- 启动PostgreSQL服务
- 创建新扩展:
CREATE EXTENSION vectors;
4. 权限处理
升级后,可能需要为数据库用户授予超级用户权限才能创建向量索引:
ALTER ROLE immich WITH superuser;
5. 重建索引与数据
对于Immich用户,升级后需要:
- 清空相关表数据
- 重新添加向量列
- 创建新的向量索引
- 重新运行面部识别和智能搜索的学习过程
技术建议与注意事项
-
版本兼容性:确保PostgreSQL版本与pgvecto.rs版本兼容,目前支持PostgreSQL 14。
-
构建环境:建议使用Rust稳定版(1.76+)进行构建,虽然夜间版也能工作。
-
文件位置:关键文件包括:
- vectors.so:PostgreSQL的lib目录
- vectors.control和升级脚本:PostgreSQL的extension目录
-
生产环境建议:对于生产环境,建议先在测试环境验证升级过程,特别是评估数据丢失的影响。
未来版本改进方向
根据用户反馈,pgvecto.rs团队计划在后续版本中:
- 提供包含二进制库和所有升级文件的tar包
- 完善非Debian系统的安装指南
- 改进升级脚本的打包和部署机制
- 增强版本兼容性检查
通过遵循本文指南,用户应该能够顺利完成pgvecto.rs从0.1.x到0.2.0版本的升级过程。对于特定应用场景(如Immich),可能需要额外的数据处理步骤,建议参考应用的具体文档。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0129
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00