pgvecto.rs 从0.1.1升级到0.2.0版本的技术指南
升级背景与挑战
pgvecto.rs作为PostgreSQL的向量数据库插件,在0.2.0版本中引入了多项改进。然而,从0.1.x版本升级到0.2.0版本时,用户可能会遇到一些技术挑战,特别是在非Docker环境下的裸机或虚拟机部署场景中。
升级过程中的关键问题
在升级过程中,用户主要遇到了以下几个技术难点:
-
版本识别问题:从源代码构建时,Cargo.toml文件中默认的版本号为0.0.0,需要手动修改为0.2.0才能正确安装。
-
依赖版本冲突:pgrx依赖版本需要与系统安装的版本匹配,否则会导致构建失败。
-
升级路径缺失:直接使用ALTER EXTENSION命令升级时,系统报告没有从0.1.1到0.2.0的升级路径。
-
扩展删除困难:尝试删除旧版本扩展时,由于依赖关系导致操作失败。
解决方案与最佳实践
1. 准备工作
在开始升级前,建议先备份数据库,特别是包含向量数据的表。对于Immich用户,这包括asset_faces和smart_search表中的数据。
2. 正确安装新版本
从源代码构建时,需要特别注意以下两点:
- 修改Cargo.toml中的版本号为0.2.0
- 确保pgrx依赖版本与系统安装版本一致
构建命令示例:
cargo pgrx install -c /usr/lib/postgresql14/bin/pg_config --sudo --release
3. 升级策略选择
根据实际测试,推荐采用以下两种升级策略之一:
策略一:完整升级路径
- 确保升级脚本vectors--0.1.11--0.2.0.sql已放置在PostgreSQL的extension目录中
- 执行以下SQL命令序列:
UPDATE pg_catalog.pg_extension SET extversion = '0.1.11' WHERE extname = 'vectors';
UPDATE pg_catalog.pg_extension SET extrelocatable = true WHERE extname = 'vectors';
CREATE SCHEMA IF NOT EXISTS vectors;
ALTER EXTENSION vectors SET SCHEMA vectors;
UPDATE pg_catalog.pg_extension SET extrelocatable = false WHERE extname = 'vectors';
ALTER EXTENSION vectors UPDATE TO '0.2.0';
SELECT pgvectors_upgrade();
策略二:全新安装(适用于可接受数据丢失的场景)
- 删除旧版扩展:
DROP EXTENSION vectors CASCADE;
- 停止PostgreSQL服务
- 安装新版vectors.so库文件
- 启动PostgreSQL服务
- 创建新扩展:
CREATE EXTENSION vectors;
4. 权限处理
升级后,可能需要为数据库用户授予超级用户权限才能创建向量索引:
ALTER ROLE immich WITH superuser;
5. 重建索引与数据
对于Immich用户,升级后需要:
- 清空相关表数据
- 重新添加向量列
- 创建新的向量索引
- 重新运行面部识别和智能搜索的学习过程
技术建议与注意事项
-
版本兼容性:确保PostgreSQL版本与pgvecto.rs版本兼容,目前支持PostgreSQL 14。
-
构建环境:建议使用Rust稳定版(1.76+)进行构建,虽然夜间版也能工作。
-
文件位置:关键文件包括:
- vectors.so:PostgreSQL的lib目录
- vectors.control和升级脚本:PostgreSQL的extension目录
-
生产环境建议:对于生产环境,建议先在测试环境验证升级过程,特别是评估数据丢失的影响。
未来版本改进方向
根据用户反馈,pgvecto.rs团队计划在后续版本中:
- 提供包含二进制库和所有升级文件的tar包
- 完善非Debian系统的安装指南
- 改进升级脚本的打包和部署机制
- 增强版本兼容性检查
通过遵循本文指南,用户应该能够顺利完成pgvecto.rs从0.1.x到0.2.0版本的升级过程。对于特定应用场景(如Immich),可能需要额外的数据处理步骤,建议参考应用的具体文档。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00